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Executive Summary1 

This study aims to establish a more rigorous psychometric framework for analyzing 
foundational literacy assessments, which are typically oral, one-on-one, and conceptually 
complex. These assessments have lacked the comparability and benchmarking capabilities of 
larger international and regional assessments. The study’s findings demonstrate that Item 
Response Theory (IRT), particularly the Rasch model, is an effective method for setting 
benchmarks in literacy assessments, especially for reading comprehension (RC) and oral 
reading fluency (ORF). Unlike Generalized Linear Mixed Models (GLMM), which are 
computationally efficient but fail to account for item-level differences, IRT provides a unified 
latent scale for comprehension and precursor skills, offering deeper insights into student 
ability. 
 
However, the study highlights trade-offs between benchmarking approaches. Traditional 
methods offer precise but subjective benchmarks, GLMM sets benchmarks with high 
statistical precision but without item-level context, and IRT provides moderate precision while 
incorporating the most comprehensive data available. Although IRT confidence intervals may 
be broader than ideal from a reading science perspective, they remain acceptable from a 
psychometric standpoint. 
 
The analysis also reinforces the unidimensionality and reliability of foundational reading 
assessments, confirming that certain skills (e.g., accuracy and ORF) are stronger predictors of 
reading proficiency than others (e.g., letter sounds and listening comprehension). 
Additionally, the study represents one of the largest compilations of foundational reading 
data to date, spanning 32 languages across eight countries. This dataset offers unique insights 
into language group trends, though further modeling is needed for broader linguistic 
comparisons. 
 
While IRT provides a theoretically sound approach to benchmark setting, its limitations 
include broad confidence intervals for non-RC subtasks and the assumption of 
unidimensionality. Future research should explore alternative IRT models (2PL, 3PL, and 
multidimensional IRT), Bayesian estimation methods for small sample sizes, and refinements 
in confidence interval estimation. Despite these challenges, IRT remains the most 
comprehensive method for setting literacy benchmarks, leveraging item-level data to enable 
meaningful comparisons across assessments and educational contexts. 

  

 
1 Authored by Abdullah Ferdous and Eric Muller - American Institutes for Research.  
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Section 1: Introduction 

The United Nations (UN) Sustainable Development Goal (SDG) 4 aims to ensure that, by 2030, 
“all girls and boys complete free, equitable and quality primary and secondary education 
leading to relevant and effective learning outcomes.” SDG 4.1.1 measures the proportion of 
children and young people achieving at least a minimum proficiency level (MPL) in reading 
and math at three educational stages: Grades 2/3 (early primary), end of primary, and end of 
lower secondary.  

The UNESCO Institute for Statistics (UIS) is the custodian agency responsible for reporting 
progress on education SDG, and develops standards, methodologies and guidelines to enable 
countries to report on these goals. Since 2016, UIS has worked through the Global Alliance to 
Monitor Learning (GAML) to support national strategies for learning assessments and 
developing internationally comparable indicators and methodological tools to measure 
progress towards SDG 4 targets. 

However, reporting on SDG 4.1.1a (Grades 2/3 proficiency in reading and mathematics) has 
been insufficient: 

• As of late 2023, only 37 countries reported learning data at the Grade 2/3 level. 

• Over the past six years, only 101 countries reported learning data at the end-of-
primary, while 203 countries reported primary school enrollment.  

The slow increase in reporting rates of 4.1.1a in the past several years suggest it could take 
decades to match enrollment reporting rates. Several challenges contribute to the lack of 
coverage for 4.1.1a. First, many countries use children’s first languages for instruction in the 
early grades. Different orthographies affect reading acquisition in complex ways, potentially 
requiring benchmarks specific to different language groups. Second, many widely used early 
grade learning assessments were designed for advocacy and monitoring rather than 
international proficiency reporting. Finally, there are more significant technical difficulties in 
measuring skills at the lower primary level when children are in the formative phases of 
learning to read. There is a risk of evaluating a conditioned response rather than cognitive 
skill.  

Due to low reporting rates, indicator 4.1.1a was downgraded from a Tier 1 indicator to a Tier 
2 indicator in October 2023 by the UN’s Interagency Expert Group on the SDGs (IAEG-SDGs). 
The reclassification signifies that the indicator lacks adequate data for meaningful cross-
national comparisons. Indicator 4.1.1 parts b (end of primary) and c (end of lower secondary) 
remain Tier 1 indicators. As a Tier 2 indicator, 4.1.1a risks removal from the SDG framework, 
as the IAEG-SDGs plans to eliminate all Tier 2 indicators in 2025. To restore SDG 4.1.1a as a 
Tier 1 indicator, at least 50% of countries where the indicator is relevant must report data. 

 

https://gaml.uis.unesco.org/
https://gaml.uis.unesco.org/
https://unstats.un.org/sdgs/iaeg-sdgs/
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Global education leaders and the IAEG agreed on this goal and have set out action steps to 
provide better guidance and information to countries about available tools for global 
reporting. This report documents the results of a study undertaken as a key step to improve 
reporting: developing a robust benchmarking methodology for reporting on indicator 4.1.1a 
reading skills.  

Section 2: Background to this Study 

In December 2023, UIS, GAML experts, and key stakeholders convened to discuss strategies 
for increasing SDG 4.1.1a coverage while maintaining rigorous methodological standards. The 
discussions focused on resolving challenges in producing reliable and internationally 
comparable learning outcomes data, reviewing recent advancements, and outlining an 
agenda for future improvements. 

One of the main concerns addressed was the limited use of well-known and commonly 
administered assessments for 4.1.1a reporting. These include the Early Grade Reading 
Assessment (EGRA), the Foundational Learning Module (FLM) of the Multiple Indicators 
Cluster Survey (MICS), and the People’s Action for Learning (PAL) Network tools. These 
assessments were primarily designed for advocacy, program design, and monitoring and 
evaluation, not for global reporting and comparison. UIS has not accepted data from these 
assessments for 4.1.1a reporting due to the lack of explicit alignment with the Minimum 
Proficiency Levels (MPL) and Global Proficiency Framework (GPF), and insufficient 
documentation of their properties. 

To address these issues, UIS was requested to prepare eligibility criteria for reporting against 
indicator 4.1.1.a, including both psychometric and procedural standards for assessments. The 
resulting draft criteria cover: 1) alignment to the MPL and construct validity, 2) item content 
and quality, 3) population coverage and sampling, 4) assessment administration and data 
custodianship, 5) reliability, 6) benchmark-based linking to the MPL, and 7) maintaining 
standards over time. UIS solicited input from the community of interest and a Technical 
Advisory Group (TAG) tasked with commenting and advising on the criteria and issues related 
to measurement.  

Based on revisions and recommendations to the criteria from the first TAG meeting in March 
2024, UIS proposed to the IAEG-SDGs to unpack SDG 4.1.1a reporting to address two key 
measurement issues. First, home languages used for instruction in early grades pose 
measurement and benchmarking challenges due to differences in orthographic complexity. 
Second, early grade children are still mastering precursor elements of reading (e.g., oral 
language comprehension and decoding with fluency), complicating traditional assessments. 
The MPL for SDG 4.1.1 focuses on the transition from ‘learning to read’ to ‘reading to learn’ 

 

https://tcg.uis.unesco.org/wp-content/uploads/sites/4/2024/02/GAML-Criteria-for-reporting.pdf
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(i.e. reading comprehension).2 In the early grades, measuring precursor skills involves 
measuring a conditioned response rather than cognition (e.g., one is trying to assess 
automaticity in decoding, which is different from the cognition required for processing 
comprehension questions). This presents challenges to conventional psychometric 
techniques.   

UIS therefore proposed benchmarks for reading precursor skills, allowing countries to 
measure and report progress towards the MPL in the early grades. As many assessments such 
as EGRA, MICS, and PAL Network address precursor skills, AIR used their data for a benchmark 
analysis.  

Results of the benchmark analysis (presented below in Section 3) were discussed during the 
second TAG meeting in May 2024. The TAG concluded that high-quality data and large sample 
sizes could, in principle, support the establishment of language-specific benchmarks, drawing 
on insights from South Africa and Kenya’s national methodologies. However, further analysis 
was required to assess method reliability, and additional data was needed for certain 
languages as well as for numeracy and mathematics—leading to the additional results 
discussed in Sections 4 and 5 below). The TAG also highlighted the importance of clearer 
definitions of assessment difficulty levels and expanded national benchmark-setting 
experiences. UIS is currently addressing these issues through a separate initiative, distinct 
from the scope of this study. 

The TAG meetings in March and May confirmed that all assessments meeting the eligibility 
criteria can be used for reporting, including traditional assessments, newer assessments that 
measure precursor skills, and national assessments. The recommended metrics for reporting 
are: 

• Reading: The percentage of children correctly answering a sufficient number of 
comprehension questions. 

• Mathematics: Initially, the percentage of children correctly answering questions on 
numbers and operations.  

This focus on numbers and operations, rather than other areas of mathematics (e.g. shapes, 
early algebraic skills), is a practical choice. While all areas are equally important for achieving 
the MPL in mathematics, the TAG recommended starting with numbers and operations while 
research on benchmarks for other mathematics components is conducted. 

Countries with a low percentage of children demonstrating reading with understanding or 
strong mathematical skills may report on precursor skills in reading, and broader 
mathematical abilities beyond operations. These data can be compared to benchmarks to 

 
2 UIS has come to refer to all skills “prior” to comprehension as “precursor” skills. This may not be conventional 
terminology in reading science but is a convenient shorthand.   
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track. However, to be useful, benchmarks must have numerical values and should be 
established using a defensible methodology. The remainder of this study report outlines a 
method for developing benchmarks in reading and provides examples of its application. 
Benchmarks for mathematics are under development.  

Section 3: Theoretical Framework and Initial Benchmark Analysis 
Results 

In the hierarchy of foundational literacy skills, Reading Comprehension (RC) represents the 
apex, built upon several precursor skills, including Oral Reading Fluency (ORF), Listening 
Comprehension (LC), Letter Sound (LS), Syllable Sound (SS), Familiar Words (FMW), Invented 
Words (INW), and Silent Reading Comprehension (SRC). Traditionally, educators and 
administrators have set benchmarks for subtasks involving multiple-choice or binary response 
items, such as RC, by adopting thresholds—typically 60% or 80% correct responses—which 
have become customary in the communities of practice working with precursor skills 
assessment (e.g., EGRA Benchmarks; EGRA Benchmarking Process). These thresholds align 
with what many school systems consider “passing” (60% to 69%) and “good” (80% to 89%) 
(Academic Grading in the United States) and were endorsed as reasonable benchmarks during 
the TAG meeting in March 2024.  
 
The TAG recommended reporting only RC proficiency but emphasized the importance of 
supporting low- and middle-income (LMI) countries by also reporting on the percentage of 
learners who have mastered precursor skills. This approach provides critical insights into 
students’ progress along the learning pathway toward reading comprehension benchmarks, 
allowing countries to make informed decisions about interventions that improve educational 
outcomes. 
 
However, linking RC benchmarks to benchmarks in the precursor skills presents several 
challenges. Some precursor assessments involve timed tasks, while others are timed though 
not explicitly time-limited. For instance, passage-based ORF, or letter-sounding, typically 
involve students reading a passage of reasonable word length or a list of letters within a one-
minute timeframe. In these cases, students are assessed based on the number of words or 
letters read correctly per unit of time.  
 
Although benchmarks exist for some precursor skills, they are only established in a limited 
number of countries. Additionally, these benchmarks are often norm-based (e.g., DIBELS) 
rather than criterion-referenced (e.g., EGRA in Lebanon Morocco), making it difficult to 
directly relate precursor skill performance to desired comprehension levels. While research 
suggests that precursor skills causally predict reading comprehension outcomes, translating 
a fixed percentage threshold (e.g., 80% or 60% for RC) into an ORF performance scale remains 

 

https://www.edu-links.org/sites/default/files/media/file/EGRA%20Basics%20and%20Beyond_Benchmarking.pdf
https://www.edu-links.org/sites/default/files/media/file/Guidelines%20Document_0.pdf
https://en.wikipedia.org/wiki/Academic_grading_in_the_United_States
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ambiguous. This ambiguity complicates the process of setting meaningful proficiency 
standards for precursor skills.  
 
To clarify these issues, we first examined two existing approaches to benchmark setting. 
Efforts to establish separate benchmarks for RC and precursor skills using judgmental 
standard setting methods have encountered several challenges:  

• Cognitive burden on subject matter experts (SME). Experts must evaluate multiple 
precursor skills (typically six to seven), making the process complex and demanding. 

• Inconsistencies in benchmarking across skills. The relationship between RC and 
precursor skill benchmarks varies across datasets, lacking clear coherence. 

• Judgmental errors, particularly in shorter tasks. Tasks like listening comprehension are 
brief, raising questions about whether SMEs are genuinely consistent or if the 
consistency is forced due to the brevity of the task.  

Despite these limitations, existing research supports the notion that foundational literacy 
skills form a unidimensional construct. This study confirms that finding and aligns with prior 
work in this area. 
 
Previous benchmarking approaches that have attempted to establish criterion-referenced 
proficiency standards by linking precursor skills to RC, typically do not integrate this 
unidimensionality into joint benchmarking setting. Instead, they rely on classical statistical 
methods, assuming that comprehension questions and precursor skill tasks (e.g. recognizing 
words, letters, or passages) are equal in difficulty. These methods are not based on a 
theoretical framework that includes latent reading ability, making it difficult to accurately 
measure and align skill progression.  
 
To address these gaps, this study proposed a data-driven approach for establishing RC and 
precursor skill benchmarks using Item Response Theory (IRT). This method allows for: 

• More reliable benchmarking across multiple contexts (e.g. different countries, grade 
levels, and languages). 

• A unifying measure of latent reading ability, maintaining the criterion-referenced 
approach of linking benchmarks to an agreed-upon RC proficiency level. 

• Adjustments for fluency-based precursor skills, particularly those using timed 
measures that assess fluency across entire passages rather than specific words.  

 

Rasch Accuracy IRT Model: Initial Approach 
The first step in the proposed data-driven approach for setting benchmarks for RC precursor 
skills (i.e. timed subtasks such as ORF) by using pre-determined RC benchmarks (e.g. 60% or 
80% accuracy) is IRT item calibration. IRT item calibration is a statistical process used to 
estimate the characteristics of assessment items within a framework that relates an 
individual's ability to their probability of responding correctly to an item (de Ayala, 2009). 
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According to IRT, each item on an assessment has numerical values for properties known as 
“parameters.” The parameters associated with an item depend on the chosen IRT model, but 
the most common parameters measured in IRT are: 

• Difficulty – the ability level at which a respondent has a 50% chance of answering the 
item correctly. 

• Discrimination – how well the item distinguishes between individuals with different 
ability levels. 

• Guessing (in some models) – the probability of answering the item correctly by chance. 

There are many IRT models, but for dichotomously scored data the three most common are 
(Rasch, 1960): 

• Rasch Model (1 parameter) – only measures the difficulty parameter. 
• 2PL (2 parameter) Model – measures the difficulty and discrimination parameter. 
• 3PL (3 parameter) Model – measures the difficulty, discrimination, and a guessing 

parameter. 

In this study, a Rasch model was used to analyze the data and obtain the item parameters. 
The Rasch model is designed to measure latent traits such as ability or proficiency and is 
characterized by its simplicity and strong mathematical properties, focusing on the 
relationship between a person's ability and the difficulty of the test items and putting these 
two concepts onto the same metric (Lord, 1980). The main assumption of the Rasch model is 
that the probability of a correct response depends only on the difference between the 
person's ability and the item's difficulty. Mathematically the Rasch model is expressed as: 
 

𝑃𝑃�𝑋𝑋𝑗𝑗𝑗𝑗 = 1� =  𝑒𝑒(𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖)

1+𝑒𝑒(𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖)
, 

Where: 
• 𝑃𝑃�𝑋𝑋𝑗𝑗𝑗𝑗 = 1� is the probability that person 𝑗𝑗 answers item 𝑖𝑖 correctly, 
• 𝜃𝜃𝑗𝑗  is the ability level of person 𝑗𝑗, 
• 𝑏𝑏𝑖𝑖 is the difficulty level of item 𝑖𝑖, 
• And 𝑒𝑒 is the base of the natural logarithm (Embretson & Reise, 2000). 

 
Key features of the Rasch model include (de Ayala, 2009; Lord, 1980): 

• Unidimensionality: It assumes a single latent trait (e.g., ability) influences responses. 
• Additivity: The model is based on the difference between ability level (𝜃𝜃𝑗𝑗) and difficulty 

level (𝑏𝑏𝑖𝑖) making interpretation straightforward. 
• Item Invariance: The difficulty of items is independent of the sample used for 

calibration. 
• Person Invariance: A person's ability estimate is independent of the specific set of 

items administered. 

The Rasch model is one of the most widely used IRT models in educational assessment due to 
its ease of interpretability, strong theoretical foundations, and ability to generate invariant 
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and comparable measurements across diverse groups and contexts. It, along with related 
models and tools in the same family, is employed in all major international and regional 
assessments that underpin SDG 4.1.1. Beyond its robust mathematical, statistical, and 
theoretical properties, its widespread adoption further justifies its selection for this report. 
The Rasch model is particularly valuable in educational assessment for calibrating items, 
setting benchmarks, and scaling scores. 

Item Calibration 
In IRT, the process of estimating item parameters based on item response data (i.e. responses 
collected from a sample's test items) is known as item calibration. Calibrating the Rasch model 
item parameters involves estimating each item’s difficulty parameter (𝑏𝑏𝑖𝑖) to create a scale 
that reflects the relationship between respondent ability (𝜃𝜃𝑗𝑗) and item difficulty (Baker & Kim, 
2004). These parameter estimates are iteratively refined. In this study, estimation is 
conducted using the Expectation-Maximization (EM) algorithm, which maximizes the 
likelihood of the observed data under the model.  
 
In the Rasch model, both item difficulty and person latent ability are represented on a 
continuous scale, ranging from negative infinity to positive infinity. In practice, however, most 
estimates fall within a narrower range, typically between -6 and 6, with values near zero 
representing average difficulty or ability. Higher positive values indicate more difficult items 
or higher ability, while lower negative values indicate easier items or lower ability.  
 
For instance, an item with a difficulty parameter of 3.5 would be among the most challenging, 
requiring students in the highest percentiles to answer correctly. Conversely, an item with a 
difficulty of -3.5 would be relatively easy, with most students expected to answer correctly. 
Similarly, a respondent with ability estimates of 2.5 would be performing well above average, 
while a respondent with an estimate of -2.5 would be performing well below average. 
Because difficulty and ability estimates are often interpreted in relation to standard 
deviations, this study maintains the scale from -6 to 6 that aligns with this convention. 

Item Calibration (via EM algorithm) Process: 

1. Data Collection - Responses from a representative sample of assessment takers are 
gathered, with each response coded as correct (1) or incorrect (0). 

2. Initialization - Initial estimates for item difficulties (𝑏𝑏𝑖𝑖) and respondent abilities (𝜃𝜃𝑗𝑗) are 
generated, often using simple assumptions like uniform distributions. 

3. Expectation Step (E-Step) - Using the current estimates of 𝑏𝑏𝑖𝑖 and 𝜃𝜃𝑗𝑗 , the algorithm 
calculates the expected likelihood of the observed responses for each examinee-item 
interaction based on the Rasch model equation 

4. Maximization Step (M-Step) - The item difficulty (𝑏𝑏𝑖𝑖) and respondent ability (𝜃𝜃𝑗𝑗) 
estimates are updated to maximize the likelihood of the observed data. 

5. Iteration - The E-step and M-step repeat until convergence, where changes in 
parameter estimates fall below a predefined threshold. 
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6. Output - The final calibrated difficulty parameters (𝑏𝑏𝑖𝑖) for each item, reflecting their 
relative difficulty, and ability estimates (𝜃𝜃𝑗𝑗) for respondents, on a shared scale. 

In summary, the Rasch model ensures that the resulting scale is invariant across populations 
and items, meaning item difficulties remain consistent regardless of the sample used (Baker 
& Kim, 2004). The EM algorithm allows for efficient and robust parameter estimation, even 
with incomplete response data or large datasets. In the Rasch model, item difficulty can be 
thought of as the height of a mountain: no matter who is climbing it, the height remains 
constant. The model separates the inherent difficulty of the item (the mountain’s height) from 
the ability of the climber to ensure that difficulty is measured consistently, regardless of who 
attempts it. This combination of the Rasch model and the EM algorithm provides a statistically 
rigorous framework for item calibration, enabling precise measurement of both item difficulty 
and respondent ability on a common scale. In practical terms, all items that are calibrated 
together using the Rasch model are placed on a common scale. This enables meaningful 
comparisons to be made across items and populations. As a result, the item calibration 
component of the proposed data-driven process of setting benchmarks for RC precursor skills 
can be summarized by the following: 
 

• Concurrent Calibration: All subtasks, including RC, ORF, LC, LS, and others, were 
calibrated together. This approach ensured that all items were placed on the same 
scale, allowing for meaningful comparisons between items and subtasks. 

 
• Rasch Model: The Rasch model was selected for its ability to create invariant 

measurement scales. It estimates item difficulty parameters (𝑏𝑏𝑖𝑖) and respondent 
abilities (𝜃𝜃𝑗𝑗) independently of the specific population and items used, ensuring 
consistency and reliability across different contexts. 

 
• Context-Specific Calibration: By stratifying the data and calibrating all subtasks 

together, the study accounted for contextual variations (e.g., differences in educational 
systems, languages, and assessment designs) while maintaining the statistical rigor of 
a unified measurement model. 

In this approach, timed tasks such as ORF are treated as subtests consisting of 𝑘𝑘 items, where 
𝑘𝑘 represents the passage or task length. Each sequential word in the passage is considered an 
individual item, and the ability to reach that item as well the correctness of its pronunciation 
determines the item's score. For example, in a passage of 100 words, the task would be 
treated as 100 separate items. If a student reads 15 words correctly, then 70 words 
incorrectly, and does not attempt the final 15 words, the scoring would be as follows: 

• 15 items scored as correct 
• 70 items scored as incorrect 
• 15f items recorded as unattempted (incorrect) 
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This approach is generally recognized as standard practice, particularly in detailed scoring 
instructions available for the most common of the oral assessments, and further validated 
during the TAG meeting in May 2024 (Early Grade Reading Assessment (EGRA) Toolkit | 
Education Links). 
 
While each word, letter, or syllable is not truly an individual item, and the timed task is 
conceptually a single item, this representation is necessary for analysis using the Rasch model. 
The Rasch model requires dichotomous data, so breaking the task into item-level scores for 
this study allowed timed tasks to be placed on the same scale as other precursor skills that 
are scored dichotomously. This approach ensured a robust and scalable calibration process 
applicable across the diverse contexts represented in the datasets. The resulting calibrated 
item parameters provided a reliable basis for setting benchmarks, analyzing foundational 
literacy skills, and examining cross-contextual trends in literacy outcomes. For comparison, 
methods for calculating benchmarks using continuous outcomes based on overall passage 
performance are also presented below (see Classical Approach for Estimating Accuracy and 
Benchmarks).  

Test Characteristic Curve (TCC) 
The next step in the Rasch model approach is to calculate Test Characteristic Curves (TCCs) 
for each subtask. The TCC represents the relationship between the latent ability (𝜃𝜃) and the 
expected total test score. It aggregates the probability of correct responses across all items in 
a test, providing insight into how the test measures ability levels. Below is an example of how 
a TCC is represented graphically using simulated data for the RC subtask of a typical 
foundational literacy assessment using 5 comprehension questions.3 

 
3 Note that this 5-question approach was fairly standard practice prior to the requirement, as per the Criteria discussed in 
this paper, that there be a minimum of 10 comprehension questions. For that reason, this is how the databases used for 
this paper are structured, and thus this format is used for the paper’s examples.  

https://www.edu-links.org/resources/early-grade-reading-assessment-egra-toolkit
https://www.edu-links.org/resources/early-grade-reading-assessment-egra-toolkit
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Figure 1. Example of a Reading Comprehension (RC) Test Characteristic Curve (TCC) 

 
To calculate the TCC for a subtask, the difficulty parameters 𝑏𝑏𝑖𝑖 obtained from item calibration 
are utilized. As stated in the previous section, the Rasch model calculates the probability of a 
correct response to an item such that: 
 

𝑃𝑃�𝑋𝑋𝑗𝑗𝑗𝑗 = 1� =  𝑒𝑒1.7(𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖)

1+𝑒𝑒1.7(𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖), 

 
where 𝜃𝜃𝑗𝑗  is the ability level of person 𝑗𝑗 and 𝑏𝑏𝑖𝑖 is the difficulty parameter of item 𝑖𝑖 and the 
scaling factor 1.7 (Lord, 1980). The TCC is then calculated by summing the expected 
probabilities of correct responses for all 𝑘𝑘 items within the subtask along a theoretical range 
of ability levels (𝜃𝜃) such as from -6 to 6: 

𝑇𝑇𝑇𝑇𝑇𝑇(𝜃𝜃) =  �𝑃𝑃(
𝑘𝑘

𝑖𝑖=1

𝑋𝑋𝑗𝑗𝑗𝑗 = 1). 

 
In the example above, the simulated difficulty parameters (𝑏𝑏) for each item (𝑖𝑖) are 𝑏𝑏1 = −2, 
𝑏𝑏2 = −1, 𝑏𝑏3 = 0, 𝑏𝑏4 = 1, and 𝑏𝑏5 = 2. Each 𝑏𝑏 is the difficulty parameter from the Rasch model 
equation shown above which calculates the probability of a correct response to an item. In 
the Rasch IRT model, difficulty parameters indicate how challenging an item is for test-takers. 
The values typically range from negative to positive, with lower values representing easier 
items and higher values indicating more difficult items. 
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For example, an item with a difficulty of -2 would be not very difficult, meaning most students 
can answer it correctly, while an item with a difficulty of +2 would be much more difficult, 
answered correctly only by higher-ability students. A difficulty value around 0 suggests a 
medium-difficulty item that about half of the test-takers are expected to answer correctly. In 
practice, these values help ensure that test items are appropriately distributed across skill 
levels, allowing for a more accurate measurement of student ability. 
 
The number of reading comprehension items, however, is not required to be fixed at five 
items. Increasing the number of reading comprehension items in an EGRA assessment would 
likely make the TCC steeper and extend its range. With more items, the total test score would 
span a wider scale, allowing for finer distinctions between different ability levels. Additionally, 
increasing the number of items would reduce measurement error by providing a more stable 
estimate of student ability, as each additional item contributes more information to the 
overall test. However, the impact would depend on the difficulty levels of the new items—if 
they are evenly distributed across the ability range, the test would better differentiate 
students across the spectrum, but if clustered at a certain difficulty level, the test’s sensitivity 
might shift. Overall, a longer test would provide a more detailed picture of student 
comprehension while potentially altering the way ability estimates align with scoring 
interpretations. 
 
Conversely, decreasing the number of reading comprehension items would have the opposite 
effect, potentially flattening the TCC and narrowing its range. With fewer items, the total test 
score would provide less granularity in distinguishing between ability levels, making it harder 
to differentiate students, particularly in the middle of the ability distribution. A shorter test 
would also increase measurement error, as each item would carry more weight, making 
ability estimates more sensitive to individual responses. If the remaining items do not 
adequately cover the range of difficulty, the test may become less effective at assessing 
students at the lower or higher ends of the spectrum. While a reduced item count may 
improve efficiency and administration time, it could come at the cost of precision and 
reliability in measuring comprehension ability. 
 
Since foundational literacy assessments are designed for early learners who are still 
developing literacy skills, it is essential to consider test length when adjusting the number of 
comprehension items. Younger students typically have limited attention spans and cognitive 
stamina, making longer tests more likely to cause fatigue, disengagement, or rushed 
responses, which could introduce additional measurement error. Although increasing the 
number of items can enhance the reliability of ability estimates, this must be balanced against 
the practical limitations of test-takers to ensure assessment accurately reflects their true 
skills. A test that is too long may disadvantage students with lower stamina, potentially 
underestimating their comprehension ability simply due to test exhaustion. Therefore, 
decisions about item count should carefully consider both psychometric benefits and the 
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cognitive demands placed on young learners to maintain validity and fairness in the 
assessment. 

Test Information Curve (TIC) 
Once the TCC has been calculated for each subtask, the next step is to calculate the Test 
Information Curve (TIC) for each subtask. The TIC quantifies the precision of a test at different 
ability levels (𝜃𝜃). It is derived by summing the item information functions (IIFs) for all items, 
where item information is a measure of how well an item discriminates between individuals 
of varying ability levels. Below is an example of how a TIC is represented graphically using 
simulated data for the RC subtask of a thus-far typical foundational literacy assessment. The 
simulated data used here is the same as for the TCC.  

Figure 2. Example of a Reading Comprehension (RC) Test Information Curve (TIC) 

 
In the Rasch model, the IIF for an individual item is defined as: 
 

𝐼𝐼𝑖𝑖(𝜃𝜃) = 𝑃𝑃�𝑋𝑋𝑗𝑗𝑗𝑗 = 1� ∙ (1 − 𝑃𝑃�𝑋𝑋𝑗𝑗𝑗𝑗 = 1�), 
 

where 𝑃𝑃�𝑋𝑋𝑗𝑗𝑗𝑗 = 1� is the Rasch probability of a correct response to item 𝑖𝑖 at ability level 𝜃𝜃 
(Birnbaum, 1968). Note that the IIF will be maximized when P = 0.5. This occurs because the 
IIF reaches its maximum value when the probabilities of a correct and incorrect response are 
equal, i.e., when the outcome is most uncertain. Interpretively, this means that an item 
provides the most information about a respondent’s ability when (without taking a 
respondent’s ability into account) there is a 50% chance of answering it correctly or 
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incorrectly. An equal probability of answering an item correctly or incorrectly means that the 
item is as sensitive as possible to differences in ability levels, making it optimal for 
distinguishing between respondents that are near the item’s difficulty level. The TIC for the 
entire test (in this case, subtask) is then expressed as:  
 

𝑇𝑇𝑇𝑇𝑇𝑇(𝜃𝜃) = �𝐼𝐼𝑖𝑖(𝜃𝜃)
𝑘𝑘

𝑖𝑖=1

 

 
where 𝑘𝑘 is the total number of items in the test/subtask (Samejima, 1977). In the above 
example, the largest amount of information is found where ability level (𝜃𝜃) is approximately 
equal to the item difficulty (𝑏𝑏), which is 0 in this case. This indicates the highest measurement 
precision at that point on the ability scale for this subtask. This occurs because the items in 
this example are symmetrically distributed around 𝑏𝑏 = 0. As a result, the test is most 
informative around 𝜃𝜃 = 0, where the respondent's ability matches the average item 
difficulty, i.e. where there is the most sensitivity to differences in ability levels and the highest 
measurement precision.  

Estimating Reading Comprehension Benchmark (RCBM) Ability 
Once the item parameters have been estimated and the TCCs for each subtask have been 
calculated, the next step in the initially proposed data-driven approach to benchmarking RC 
precursor skills is to identify the ability levels (𝜃𝜃) on the RC TCC that correspond to RC scores 
of 60% and 80% correct. The Reading Comprehension benchmark (RCBM) ability levels 
corresponding to 60% and 80% accuracy are determined by identifying the ability level (𝜃𝜃) at 
which the expected score on the TCC is closest to the benchmark score for 60% and 80% 
correct (on a test with five RC items, this corresponds to three items correct for 60% RCBM 
and four items correct for 80% RCBM). Below is a graphical representation of this process for 
an 80% correct RCBM on an assessment that has five RC items, using the same simulated data 
as in the prior examples. 
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Figure 3. Example of Estimating Reading Ability at 80% RCBM via the TCC 

 
 
In the example above, the RCBM is set at 80% accuracy for a RC subtask with five items, which 
means that the benchmark score would be four correct items out of five total items. As a 
result, the RCBM for 80% correct is the 𝜃𝜃-value where the difference between the expected 
score (from the TCC) and the benchmark score (4) is minimal. Graphically, the process starts 
with the given expected score the vertical axis. One then reads to the right from there using 
the red dotted one until that line meets the TCC, and then one reads from that intersection 
down to the horizontal axis, to thus reading how the number of correct responses on the 
vertical axis translates into the 𝜃𝜃-value on the horizontal axis. In the example illustrated 
above, the corresponding 𝜃𝜃-value for 80% RC accuracy is approximately 1.9. That is, one is 
reading from a criterion-referenced benchmark for questions that are answered correctly to 
an estimated measure of latent ability (𝜃𝜃).  

Estimating Reading Comprehension Standard Error (RCSE)  
Next, the standard error (SE) of the RCBM ability level (𝜃𝜃) is obtained by first locating the test 
information value (𝐼𝐼(𝜃𝜃)) which corresponds to 𝜃𝜃. Traditionally, SE is the standard deviation of 
the sample-based estimate of a population parameter, but in IRT, it represents the 
uncertainty in estimating a student's ability level (θ) based on their test performance. Instead 
of reflecting variability across repeated samples, SE in this context indicates how precisely the 
test measures ability at different points along the θ scale. A lower SE means a more precise 
estimate, while a higher SE suggests greater uncertainty in assessing a student’s true ability. 
SE is directly tied to test information (𝐼𝐼(𝜃𝜃)), which quantifies how well the test differentiates 
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ability levels—higher test information leads to lower SE, meaning greater confidence in the 
ability estimate.  
 
Once the test information value for 𝜃𝜃 has been obtained, the SE for 𝜃𝜃 is calculated by the 
inverse of the square root of 𝐼𝐼(𝜃𝜃) as shown in the following equation: 
 

𝑆𝑆𝑆𝑆(𝜃𝜃) = 1
�𝐼𝐼(𝜃𝜃)

. 

 
To illustrate the process of locating 𝐼𝐼(𝜃𝜃), below is a graphical representation using the same 
simulated data from the above example for estimating 𝜃𝜃 using the TCC.  

Figure 4. Example of Estimating Test Information via the TIC for 80% RCBM 

 

In the example above 𝜃𝜃 is 1.9, which, according to the TIC, means that the test information 
value for that 𝜃𝜃 is 0.64 (𝐼𝐼(𝜃𝜃𝑅𝑅𝑅𝑅) = 0.64). This means that the corresponding SE for a 𝜃𝜃 value 
of 1.9 is 1.25, because 1/√0.64 = 1.25. Therefore 1.25 is the SE for the 80% RCBM (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
1

√0.64
= 1.25). In other words, the location on the 𝜃𝜃 ability scale of the 80% RCBM (1.9) 

corresponds to a SE of 1.25 according to the TIF for Reading Comprehension. To trace these 
steps graphically using the figure above, one begins at 0 on the horizontal x-axis, finds location 
of the ability level (𝜃𝜃) of 1.9, then reads up along the dotted green line until it intersects the 
TIC, and reads to the left along the dotted red line. This is then used to estimate the SE, as per 
the equation.  
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Estimating Benchmarks for Precursor Skills 
Once the corresponding locations on the ability scale (𝜃𝜃) have been determined for the RC 
benchmarks of 60% and 80% correct, these ability levels are used to identify the expected 
scores on the TCCs of the precursor skills. These expected scores represent the calibrated 
benchmarks for the precursor skills, aligning them with the RC proficiency levels. By 
translating RC ability levels into equivalent performance expectations for each subtask, this 
approach ensures consistency across different measures of foundational literacy and, as a 
result, provides a unified framework for interpreting student performance across subtasks, 
using the same measure of latent ability 𝜃𝜃 for all sub-tasks such as RC, ORF, etc., while 
maintaining a direct connection between all the precursor skills jointly and the RC scale. 
Below is a graphical representation of this process for using the 80% RCBM in the previous 
examples to estimate the corresponding benchmark for ORF using simulated data. It is also 
important to note that earlier attempts to set benchmarks using classical regression 
techniques do not base themselves on a unified and coherent view of the test-takers’ latent 
or inherent ability and assume all items on the RC scale and on the scale of the precursor skills 
are of equal difficulty.   

Figure 5. Example of Estimating ORF Benchmarks for 80% RCBM  

 
In the example above, the 80% RCBM estimate for 𝜃𝜃 (1.9) corresponds to an expected score 
of 75.75 on the TCC for ORF. As a result, the benchmark for ORF according to a RCBM of 80% 
is approximately 76. In this case, one can find the location of the 80% RCBM 𝜃𝜃 by the location 
of the vertical green line on the x-axis and trace it to the blue TCC line. The point at which 
they intersect is then where one can trace the horizonal red line to the y-axis to find the 
aligned ORF benchmark. 
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Estimating the Subtask Confidence Interval 
A confidence interval (CI) was constructed around the benchmark estimates for each subtask. 
Initially, these intervals were calculated by adding and subtracting the quantity 1.96 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
from RCBM 𝜃𝜃 and finding the corresponding SE for those lower and upper 𝜃𝜃 values on that 
subtask’s TIC. Multiplying the SE by 1.96 is derived from the properties of the standard normal 
distribution, for which about 95% of the data falls within 1.96 standard deviations of the mean 
(thus corresponding to a 95% CI). As such, the upper and lower bounds for the confidence 
interval for the f estimate of the ability parameter can be calculated by: 
 

𝜃𝜃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ± 1.96 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 
 

Where 𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  𝜃𝜃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 1.96 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and 𝜃𝜃𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =  𝜃𝜃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 1.96 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and the 
estimates for 𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝜃𝜃𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 cannot exceed the minimum and maximum range of 𝜃𝜃. If the 
estimates for the bounds exceed the minimum or maximum value of 𝜃𝜃 being estimated, the 
respective bound is equal to that minimum/maximum which is being exceeded.   
 
The process for estimating the subtask confidence interval is illustrated below, using the 
simulated data values from the previous examples for RC and ORF. According to the above 
equation the lower and upper RCBM 𝜃𝜃 bounds are equal to:  
 

1.9 ± 1.96 × 1.25. 
 
As a result, the lower 𝜃𝜃 bound of RCBM equals -0.55 while the upper 𝜃𝜃 bound of RCBM equals 
4.35. Next, to estimate the confidence interval for ORF, those bounds are located on the ORF 
TCC and subsequently their corresponding expected scores. In this example, the 
corresponding values are 38.4 for the lower bound and 96.00 for the upper bound. Below is 
a graphical representation of the process. 
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Figure 6. Example of Estimating ORF Benchmark Confidence Interval for 80% RCBM 

 
 
Note that because of the method used, where the CI for the ORF is not developed on the ORF 
itself but as a projection of the CI for the ability level, the CI for the ORF is not symmetrical.  

Addressing Special Cases in Benchmark Estimation: Practical Considerations 
In foundational literacy assessments, benchmarks and confidence interval bounds for 
subtasks occasionally approach the limits of the ability scale (𝜃𝜃), either nearing 0 or exceeding 
the upper range of 6.0. This can happen due to factors like small sample sizes, high 
performance variability, or disproportionate scoring patterns. For example, benchmarks tied 
to higher RC proficiency levels (e.g., 80%) may exceed 𝜃𝜃 = 6.0 if most students perform well 
below the expected range, leaving insufficient data to support higher estimates. Similarly, 
benchmarks approaching 0 reflect scores asymptotically nearing, but not reaching, zero due 
to the infinite nature of the ability scale. Expanding the scale beyond −6.0 to 6.0 is not 
recommended, as measurement reliability declines significantly outside this range, and such 
extreme scores are rare in real-world data. By constraining the ability scale to this range, the 
study ensures reliable, interpretable, and practical results that remain grounded in the 
realities of literacy assessment. 
 
When using real data, it is important to recognize that in some cases the location of 𝜃𝜃 for 
either a subtask benchmark or a confidence interval bound may correspond to an expected 
score of 0. This can occur due to factors such as small sample size, high variance in student 
performance on the relevant subtask or RC, an overrepresentation of low scores relative to 
the possible total score on the subtask or RC, or a combination of these factors. In these 
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scenarios, while the estimated benchmark or confidence interval bound may appear to be 0, 
it is not exactly 0. Instead, the expected score is asymptotically approaching 0 because the 
ability scale is theoretically infinite, extending towards negative infinity. This effectively brings 
the expected score closer to 0 without ever reaching it. In practical terms, this outcome 
indicates that the benchmark should be interpreted as 1, as one item is the minimum number 
of items that can be scored correctly—the lowest achievable score across all subtasks. 
 
Similarly, estimated benchmarks or confidence interval bound for a subtask may also 
occasionally exceed the upper limit of the theta scale as well. Such cases may occur when an 
estimated 𝜃𝜃 value for a benchmark or confidence interval exceeds the estimated upper limit 
of theta (which is 6.0 in the present study). This issue can arise due to an interaction between 
pre-determined RCBM levels and factors such as small sample sizes, low sample performance 
on RC or the relevant subtask, or a combination of these factors. For example, in this study 
RCBMs were set at 60% and 80%, which typically corresponds to three or four correct items 
out of five RC items on an assessment, respectively. If most students score only one or two 
items correctly on RC, the location of 𝜃𝜃 for the 80% RCBM (four correct items) would most 
likely exceed 6.0, because the TCC would only be able to show data for answering at most 
two items correctly. 
 
At first glance, it may appear that expanding the estimated range of the ability scale would 
be a viable solution for these situations. However, this approach is not recommended due to 
practical limitations in measurement accuracy. In most cases, person-level ability estimates 
for any given subtask will not exceed ±6.0, for either high- or low-performing individuals or 
high- or low-performing sample populations. Beyond ±6.0 estimated ability SE increases 
significantly, which greatly reduces the reliability of measurements beyond those points. 
Foundational literacy assessments are not designed to measure extreme outliers, although 
such results may be objectively valued when they occur.  
 
These assessments aim to evaluate literacy proficiency in populations that closely reflect real-
world distributions. Extremely high scores, far beyond the expected range, are statistically 
improbable in real data and would most likely skew the results if they were to occur and be 
included in analysis of the sample. Such outliers, while noteworthy, would provide limited 
utility for generating broadly applicable insights. As a result, the study recommends 
constraining the estimated ability scale to a range of -6.0 to 6.0. This will ensure that the 
results remain reliable, interpretable, useful for practical applications, and grounded in 
empirical data. 

Classical Approach for Estimating Accuracy and Benchmarks 
In this study, the classical approach for setting benchmarks was incorporated as a 
comparative framework alongside the proposed data-driven IRT method, ensuring a 
comprehensive evaluation of literacy assessment strategies. 
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Timed Task Accuracy 
For timed tasks, accuracy measures a reader’s ability to decode and pronounce words and 
letters correctly, highlighting their mastery of foundational reading skills such as phonics. 
Accuracy focuses exclusively on the correctness of reading, independent of the amount of 
time used by the student to read the passage. As a result, the classical approach for measuring 
timed task accuracy provides a straightforward measure of a student’s ability to recognize 
and pronounce words accurately. Using ORF as an example, the calculation of ORF accuracy 
(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) can be represented with the following equation: 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 ×  100 

 
For example, if a student read a passage which contained 50 words and correctly read 45, 
their accuracy score would be calculated as follows: 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
45
50

 × 100 = 90% 

 
High accuracy is a prerequisite for comprehension, as readers must decode text reliably 
before focusing on its meaning.4 However, accuracy alone does not capture the full 
complexity of proficient reading.  
 
In addition to accuracy, foundational literacy assessments also emphasize timed tasks. These 
tasks do not always impost a strict time limit but instead measure the time required for a 
student to read a passage, word list, or letter-reading task. Such timed precursor skills, 
including ORF, are crucial indicators of reading proficiency, capturing a student’s ability to 
read text accurately, efficiently, and with proper expression.  
 
While accuracy and fluency are interrelated, they measure distinct components of reading 
performance—both of which are essential for achieving RC and fostering literacy 
development (Fuchs et al., 2001). Therefore, when establishing benchmarks for RC precursor 
skills, fluency must be considered a complementary dimension of literacy. (Note some oral 
assessments may not explicitly measure fluency and may instead focus solely on accuracy. In 
such cases, the approach defaults to accuracy).  

Classical Approach for Foundational Literacy Subtask Benchmark Estimation 
The classical approach for benchmark estimation on foundational literacy assessments uses 
the following two-step procedure which can be applied to RC and RC precursor skills: 
 

 
4 The standard threshold is 95%.  
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1. Obtain the mean (𝑋𝑋�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) total score of all RC precursor skills and the standard error 
(SE) of all subtasks from students that achieved the set RCBM score.  
 
• For example, if the RCBM was 80% on a five-item test, sample would be filtered to 

just those students that answered exactly four items correctly on RC and the mean 
score and SE for each subtask would be obtained. 
 

2. The confidence interval (CI) for each subtask is calculated by adding and subtracting 
the quantity 1.96 × 𝑆𝑆𝑆𝑆 from the mean score of each subtask. Multiplying the SE by 
1.96 is derived from the properties of the standard normal distribution, for which 
about 95% of the data falls within 1.96 standard deviations of the mean (thus 
corresponding to a 95% CI). In IRT, this is commonly used when reporting confidence 
intervals for estimated parameters like ability (𝜃𝜃).   
 

• The formula for the SE of each subtask is 𝑆𝑆𝑆𝑆 =  𝑆𝑆𝑆𝑆
√𝑛𝑛−1

 , where 𝑆𝑆𝑆𝑆 is the standard 

deviation of the subtask total score (for students at the RC benchmark) and n is 
the sample size.  

As a result, the mean subtask total score (𝑋𝑋�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) of students that met the RCBM is the new 
subtask benchmark (𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) for those precursor skills, and the classical approach formula 
(after filtering the data for students that did not meet the RCBM) for setting benchmarks for 
RC precursor skills is: 
 

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑋𝑋�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
 
And the formula for calculating CIs for all subtasks is: 
 

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ± (1.96 ∙ 𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). 
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Assessment Data for Initial Benchmark Analysis 
Four EGRA data sets were selected for the initial benchmark analysis. These included: 

• EGRA Country 4 Arabic Grade 2 
• EGRA Country 6 Arabic Grade 2 
• EGRA Country 13 Chitonga Grade 2 
• EGRA Ghana English Grade 2 

Confirmatory Analysis – Correlations and Principal Components Analysis (PCA) 
Analysis was conducted to confirm the unidimensionality of the selected assessments. The 
results of Bartlett's Test of Sphericity and the Kaiser-Meyer-Olkin (KMO) confirmed the 
datasets’ suitability for Principal Components Analysis. The high chi-square values and 
statistically significant p-values demonstrate strong correlations among the variables, while 
the KMO values indicate excellent sampling adequacy. This lays a solid foundation for 
identifying latent components and reducing dimensionality in the dataset. Further 
exploration of eigenvalues, explained variance, and loadings is recommended to interpret the 
underlying structure effectively. 

Table 1. Bartlett’s Test of Sphericity 

Assessment Bartlett.chisq Bartlett.p.value Bartlett.df 
EGRA Country 4 Arabic Grade 2 17861 <0.001 21 
EGRA Country 6 Arabic Grade 2 9182 <0.001 15 
EGRA Country 13 Chitonga Grade 2 5072 <0.001 15 
EGRA Ghana English Grade 2 4572 <0.001 10 

Bartlett's test of sphericity was conducted to determine whether the variables were 
sufficiently correlated to justify the application of Principal Components Analysis (PCA). Chi-
square values ranged from 4,572to 17,861, depending on the variable or region. P-values 
were consistently less than 0.001 (or even 0.0001), indicating statistical significance and 
confirming the appropriateness of PCA for the dataset. These results suggest that the variable 
exhibits the necessary intercorrelations required for effective dimensionality reduction and 
analysis.  

Table 2. Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy 

Subtask EGRA Country 4 
Arabic Grade 2 

EGRA Country 6 
Arabic Grade 2 

EGRA Country 13 
Chitonga Grade 2 

EGRA Ghana 
English Grade 2 

Overall 0.81 0.81 0.84 0.80 
Listening 
Comprehension 0.83 0.85 0.93 0.89 

Letter Sound 0.78 0.83 0.93 0.84 
Syllable Sound 0.88  0.83  

Invented Word 0.82 0.83 0.82 0.83 
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Subtask EGRA Country 4 
Arabic Grade 2 

EGRA Country 6 
Arabic Grade 2 

EGRA Country 13 
Chitonga Grade 2 

EGRA Ghana 
English Grade 2 

Oral Reading 
Fluency 0.75 0.77 0.80 0.74 

Reading 
Comprehension 0.73 0.80 0.84 0.76 

Silent Reading 
Comprehension 0.90    

The KMO measure was calculated to assess sampling adequacy both overall and for individual 
variables. Overall KMO values equaled or exceeded 0.8 for all assessments, indicating 
excellent adequacy (Kaiser & Rice, 1974). Task-specific KMO values ranged from 0.78 to 0.93 
across subtasks and assessments, suggesting robust sampling adequacy for most variables 
analyzed. These results further validate the suitability of the data for PCA. It is important to 
note that the KMO test is a measure of sampling adequacy in the sense of the correlations 
among items, not the number of students (sample size). It assesses whether the patterns of 
correlations among variables (items) are suitable for factor analysis by determining the 
proportion of variance that might be common variance (i.e., shared among items) rather than 
unique variance. A high KMO value (greater than or equal to 0.80) suggests that the items 
have enough shared variance for factor analysis, while a low KMO value (less than 0.50) 
indicates that the items are poorly correlated, and factor analysis may not be appropriate.  

Table 3. Principal Components Analysis (PCA) 

Variable Subtask 

EGRA 
Country 4 

Arabic 
Grade 2 

EGRA 
Country 6 

Arabic 
Grade 2 

EGRA 
Country 13 
Chitonga 
Grade 2 

EGRA 
Ghana 
English 
Grade 2 

Eigenvalue Overall 4.41 3.38 3.96 3.22 
Variance 
Explained by 
Factor 1 

Overall 0.63 0.56 0.66 0.64 

Factor 
Loading on 
Factor 1 

Listening 
Comprehension 0.48 0.45 0.32 0.63 

Letter Sound 0.64  0.73 0.76 
Syllable Sound 0.88  0.92  

Invented Word 0.87 0.85 0.94  

Oral Reading 
Fluency 0.92 0.91 0.93  

Reading 
Comprehension 0.85 0.83 0.85  

Silent Reading 
Comprehension 0.81    

The results of the PCA shown in the table above indicate that the eigenvalues exceed 1 for all 
assessments, confirming the first principal component captures a substantial portion of the 



 

25 
 

variance, consistent with the patterns observed in the scree plots below. The proportion of 
variance explained by the first factor (Component 1) varies slightly across assessments: 

• EGRA Country 4 Arabic Grade 2: 63% 

• EGRA Country 6 Arabic Grade 2: 56% 

• EGRA Country 13 Chitonga Grade 2: 66% 

• EGRA Ghana English Grade 2: 64% 

These values indicate that Component 1 explains more than half of the total variance in all 
datasets, suggesting a dominant underlying pattern in student performance across the 
assessments (Everitt & Dunn, 2001). ORF and Invented Word consistently exhibited the 
highest loadings, suggesting they are key contributors to the primary dimension of variance 
across assessments. The results demonstrate strong unidimensionality across all datasets, 
with the first component consistently explaining the majority of variance and tasks loading 
strongly onto this component. This unidimensionality makes the data well-suited for analysis 
using the Rasch IRT model, which assumes a single latent trait underlies observed 
performance. The Rasch model would provide robust, interpretable measures of student 
ability and item difficulty across these diverse assessments. 

Below the scree plot generated from the PCA for the four assessments is displayed. The plot 
visualizes the eigenvalues associated with each principal component for these assessments. 
A pronounced decline in eigenvalues is evident from Component 1 to Component 2 across all 
assessments. This indicates that Component 1 captures most of the variance in the dataset. 
The scree plot shows a noticeable “elbow” around Component 2 for most assessments, 
suggesting that the first two components are likely sufficient to explain most of the variance 
and components beyond this point contribute relatively little to the total variance. The trends 
in eigenvalues are also consistent across all four assessments, indicating a similar structure in 
the data across these regions and tasks.  
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Figure 7. Scree Plot from Principal Components Analysis (PCA) 

 
As a result, the results of the PCA and scree plot reveal that the data is largely unidimensional 
and that a dominant underlying component explains the majority of variance in student 
performance across the four assessments. The unidimensional structure revealed by PCA 
highlights the dominance of a single latent construct across student tasks and regions, a latent 
trait can be interpreted as Foundational Reading Skill. This trait aligns with key literacy skills, 
as evidenced by the consistently high loading values for tasks like ORF. The suitability of the 
Rasch IRT model ensures that this data can be effectively calibrated and analyzed, supporting 
scalable and valid assessment frameworks. 

Table 4. Item/Test Correlation by Assessment 

Subtask/Item EGRA 
Country 4 

Arabic 

EGRA 
Country 6 

Arabic 

EGRA 
Country 

13 
Chitonga 

EGRA 
Ghana 
English 

Invented Word (timed task) 0.83 0.86 0.93 0.83 
Letter Sound (timed task) 0.79 0.95 0.82 0.83 
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Listening Comprehension Item 1 0.25 0.21 0.16 0.43 
Listening Comprehension Item 2 0.18 0.30 0.15 0.36 
Listening Comprehension Item 3 0.28 0.23 0.16 0.42 
Listening Comprehension Item 4 0.18 0.26 0.26  

Listening Comprehension Item 5 0.29  0.14  

Oral Reading Fluency (timed task) 0.84 0.91 0.89 0.92 
Reading Comprehension Item 1 0.41 0.47 0.48 0.55 
Reading Comprehension Item 2 0.32 0.42 0.61 0.60 
Reading Comprehension Item 3 0.12 0.19 0.46 0.43 
Reading Comprehension Item 4 0.20 0.33 -0.03 0.39 
Reading Comprehension Item 5 0.21 -0.03 -0.27 0.25 
Reading Comprehension Item 6  0.27   

Reading Comprehension Item 7  0.20   

Syllable segmentation Item 1  0.25   

Syllable segmentation Item 2  0.25   
Syllable segmentation Item 3  0.25   

Syllable segmentation Item 4  0.30   

Syllable segmentation Item 5  0.25   

Syllable segmentation Item 6  0.23   

Syllable segmentation Item 7  0.15   

Syllable segmentation Item 8  0.22   

Syllable segmentation Item 9  0.11   

Syllable segmentation Item 10  0.17   

Syllable Sound (timed task) 0.90  0.96  

 
The table provides item/test correlations for various subtasks across four regions: EGRA 
Country 13 Chitonga, EGRA Country 4 Arabic, EGRA Country 6 Arabic, and EGRA Ghana 
English. Several items demonstrate strong correlations (≥ 0.8) across multiple regions, 
indicating their consistent alignment with the test construct. For example, Invented Word 
Item 1 shows correlations ranging from 0.80 to 0.93, suggesting it is a reliable indicator of the 
latent ability across all regions. Similarly, LS Item 1 exhibits high correlations (0.79–0.95), 
confirming its robustness, while ORF Item 1 has consistently strong correlations (0.84–0.92), 
highlighting its effectiveness in capturing the intended construct. 
 
Moderate-performing items, with correlations between 0.4 and 0.7, include RC Item 1 and 
Item 2, which show meaningful contributions to the tests, with correlations ranging from 0.32 
to 0.61. Additionally, SS Items 1–6 demonstrate modest correlations (0.17–0.30), suggesting 
their performance, while meaningful, is less substantial compared to high-performing items. 
In contrast, some items performed poorly, with correlations below 0.3 or showing 
inconsistencies across regions. For example, LC Items generally show weak correlations (0.16–
0.43), with the highest observed in Ghana English Grade 2. These results suggest these items 
may not align well with the primary test construct measured by the assessment. Similarly, RC 
Items 4 and 5 exhibit negative or near-zero correlations in some regions, such as -0.27 for RC 
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Item 5 in Chitonga, indicating potential issues. Overall, the analysis highlights several robust 
items, such as ORF, INW, and LS, which perform consistently across regions. However, 
weaknesses in certain items that suggest targeted revisions are necessary to improve 
alignment with the underlying test construct and ensure both validity and fairness in the 
assessments. 

Having established the suitability of the four assessments against, this study then conducted 
the initial benchmark analysis on all four data sets.  

Results of the Initial Rasch Accuracy IRT Model and Classical Approach  
For all IRT analyses, item calibration and estimation of Rasch model parameters was 
conducted via the free/open-source software R (R Core Team, 2024), specifically the R 
package ‘mirt’ (Chalmers, 2012). Below are the results of the initial Rasch Accuracy IRT Model 
and classical approach analysis: 

Table 5. 60% RC-based Benchmarks set by the Classical Approach 

Assessment Subtask Items SE LCI Benchmark UCI 

EGRA Country 4 Arabic 
Grade 2 

Oral Reading Fluency 42 0.61 26 27 28 
Reading Comprehension 5 NA 3 3 3 

EGRA Country 6 Arabic 
Grade 2 

Oral Reading Fluency 76 2.58 52 57 62 
Reading Comprehension 7 NA 4 4 4 

EGRA Country 13 
Chitonga Grade 2 

Oral Reading Fluency 56 0.78 24 26 27 
Reading Comprehension 5 NA 3 3 3 

EGRA Ghana English 
Grade 2 

Oral Reading Fluency 60 3.74 45 52 59 
Reading Comprehension 5 NA 3 3 3 

In the table above, the Benchmark column represents the benchmark and is calculated as the 
average performance for each subtask among students with RC scores equal to the target or 
threshold. For example, the ORF benchmark for EGRA Country 4 Arabic Grade 2 is 27, meaning 
that students who scored a 3 on RC had an average ORF score of 27. Similarly, the benchmark 
for ORF in EGRA Ghana English Grade 2 is 52, indicating the average performance of students 
with a RC score of 3. This column serves as the reference point for interpreting student 
performance in relation to the defined RC threshold. 

Table 6. 80% RC-based Benchmarks set by the Classical Approach 

Assessment Subtask Item SE LCI Benchmark UCI 
EGRA Country 4 Arabic 

Grade 2 
Oral Reading Fluency 42 0.71 33 34 36 

Reading Comprehension 5 NA 4 4 4 
EGRA Country 6 Arabic 

Grade 2 
Oral Reading Fluency 76 5.07 67 77 87 

Reading Comprehension 7 NA 6 6 6 
EGRA Country 13 
Chitonga Grade 2 

Oral Reading Fluency 56 1.1 31 33 35 
Reading Comprehension 5 NA 4 4 4 

Oral Reading Fluency 60 4.75 68 77 87 
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EGRA Ghana English 
Grade 2 Reading Comprehension 5 NA 4 4 4 

In the table above, the Benchmark column represents the benchmark and reflects the average 
performance for each subtask among students with RC scores meeting the 80% threshold. For 
example, the ORF benchmark for EGRA Country 4 Arabic Grade 2 is 34, indicating that 
students who scored a 4 on RC had an average ORF score of 34. Similarly, for EGRA Ghana 
English Grade 2, the benchmark for ORF is 77, showing the average performance of students 
with a RC score of 4. This column provides a key reference for evaluating student performance 
relative to the 80% RC threshold. 

Table 7. 60% RC-based Benchmarks and CIs set by the Rasch Accuracy IRT Model 
Assessment Subtask Item 𝜽𝜽𝑺𝑺𝑺𝑺 LCI Benchmark UCI 

EGRA Country 4 Arabic 
Grade 2 

Oral Reading Fluency 42 1.03 4 20 37 
Reading Comprehension 5 1.03 0 3 5 

EGRA Country 6 Arabic 
Grade 2 

Oral Reading Fluency 76 1.04 19 36 46 
Reading Comprehension 7 1.04 2 4 6 

EGRA Country 13 
Chitonga Grade 2 

Oral Reading Fluency 56 1.22 2 16 29 
Reading Comprehension 5 1.22 1 3 4 

EGRA Ghana English 
Grade 2 

Oral Reading Fluency 60 1.13 20 49 54 
Reading Comprehension 5 1.13 0 3 4 

In the table above, the Benchmark column represents the estimated subtask scores derived 
from the IRT method, which uses RC theta standard errors (𝜃𝜃𝑆𝑆𝑆𝑆) to calculate confidence 
intervals (LCI and UCI) for each subtask. These benchmarks reflect the expected performance 
of students whose RC ability corresponds to 60% accuracy, considering measurement 
uncertainty. For example, in EGRA Country 4 Arabic Grade 2, the ORF benchmark is 20, 
meaning students scoring at the 60% RC threshold are expected to achieve an average ORF 
score of 20. Similarly, for EGRA Ghana English Grade 2, the benchmark for ORF is 49, with 
confidence intervals ranging from 20 to 54, illustrating the range of expected scores based on 
theta uncertainty. This approach incorporates measurement error (𝜃𝜃𝑆𝑆𝑆𝑆), providing a 
statistically sound framework for defining benchmarks that align with specific RC proficiency 
levels. The benchmarks and their confidence intervals allow for nuanced interpretation of 
subtask performance in relation to RC proficiency. 

Table 8. 80% RC-based Benchmarks and CIs set by the Rasch Accuracy IRT Model  
Assessment Subtask Item 𝜽𝜽𝑺𝑺𝑺𝑺 LCI Benchmark UCI 

EGRA Country 4 Arabic 
Grade 2 

Oral Reading Fluency 42 1.21 6 27 41 
Reading Comprehension 5 1.21 1 4 5 

EGRA Country 6 Arabic 
Grade 2 

Oral Reading Fluency 76 1.1 27 46 46 
Reading Comprehension 7 1.1 3 6 6 

EGRA Country 13 
Chitonga Grade 2 

Oral Reading Fluency 56 2.13 1 26 29 
Reading Comprehension 5 2.13 1 4 4 

Oral Reading Fluency 60 1.3 23 54 54 
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EGRA Ghana English 
Grade 2 Reading Comprehension 5 1.3 1 4 4 

In the table above, the Benchmark column represents the expected subtask scores derived 
using the IRT method, which incorporates the RC theta standard errors (𝜃𝜃𝑆𝑆𝑆𝑆) to calculate 
confidence intervals (LCI and UCI). These benchmarks are tied to the 80% RC accuracy 
threshold, reflecting the average performance of students at this proficiency level while 
accounting for uncertainty in their theta estimates. For example, in EGRA Country 4 Arabic 
Grade 2, the ORF benchmark is 27, with a range of scores between 6 (LCI) and 41 (UCI). This 
suggests that students achieving 80% RC accuracy tend to score, on average, 27 on ORF. In 
EGRA Ghana English Grade 2, the benchmark for ORF is 54, with confidence intervals spanning 
23 to 54, indicating a narrower range of expected performance for students at this proficiency 
level. 

Note that the reason why the SEs are presented as the same for the ORF and RC subtasks is 
that they are the SEs for the RC benchmarks of 60% and 80% comprehension, and this 𝜃𝜃 is the 
same for all sub-tasks, given the effort to estimate all the benchmarks jointly and based on a 
𝜃𝜃 that is the generalized child ability in reading, which, as explained above, is an attractive 
feature of the IRT method as opposed to the classical method. As explained graphically above, 
the SEs for the 𝜃𝜃 are used to create a confidence interval for 𝜃𝜃, based on the RC benchmark 
and RCSE and this interval is projected onto the ORF TCC.  

Limitations 
The primary limitation of these results from the initial Rasch Accuracy IRT Model approach 
identified by the TAG in May 2024 was the size of the confidence intervals observed for non-
RC subtasks. These broad intervals reduced the precision of the estimated benchmarks, 
making it challenging to draw accurate conclusions. It was not immediately clear why the CIs 
using the IRT method should be so much broader than using a classical method. As a result, 
the TAG recommended developing solutions to reduce the size of these confidence intervals 
by exploring the suitability of an IRT method based on a binomial approach where each word 
is considered a separate item, in a task ultimately based on a sense of fluency. Narrower 
intervals would allow for greater precision and reliability in interpreting benchmarks. This 
improvement was particularly critical for ensuring robust assessments in non-RC subtasks as 
the ones being set by the data-driven methods of the approach. 
 
The next section presents the result of the additional analysis conducted as a result of the 
TAG recommendations. 
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Section 4: Updated Results from TAG Recommendations 

Following the recommendations of the TAG to explore why the novel application of IRT to the 
analysis of foundational skills in the manner described above resulted in SEs that are so much 
larger than those procured by the classical method, it was decided to re-think how the SEs of 
the precursor skills could be estimated in a more realistic manner. This was approached by 
two methods: 

1. A revised approach to the Rasch Accuracy IRT Model, in which the SE for each 
subtask is based directly on the TIC of that subtask, instead of being based on the TIC 
of reading comprehension and projected onto the subtask using the SEs of the 𝜃𝜃 
value for RC. 

2. A generalized linear mixed-model (GLMM) method for estimating benchmarks. 

Rasch Accuracy IRT Model: Revised Approach 
The revised approach to the Rasch Accuracy IRT Model is modified at the step for estimating 
each subtasks SE, whereby SE is calculated by adjusting the RC benchmark ability level (𝜃𝜃) by 
± 1.96 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 represents the standard error of the ability estimate 
for each precursor skill. In other words, in the initial approach only one SE estimate was used 
for all confidence intervals (based on the RC TIC), while in the revised approach 𝑠𝑠 estimates 
for SE were used for each subtask, where 𝑠𝑠 represents the number of precursor skills in the 
assessment.  
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Revised Rasch Accuracy IRT Model Results 

Table 9. Rasch Accuracy IRT Benchmarks According to 60% RC and Subtask SE 

Assessment Subtask Item 𝜽𝜽𝑺𝑺𝑺𝑺 LCI Benchmark UCI 

EGRA Country 4 
Arabic Grade 2 

Oral Reading Fluency 42 0.42 12 20 28 
Reading Comprehension 5 1.03 0 3 5 

EGRA Country 6 
Arabic Grade 2 

Oral Reading Fluency 76 0.45 29 36 44 
Reading Comprehension 7 1.04 2 4 6 

EGRA Country 13 
Chitonga Grade 2 

Oral Reading Fluency 56 0.47 9 16 23 
Reading Comprehension 5 1.22 1 3 4 

EGRA Ghana 
English Grade 2 

Oral Reading Fluency 60 0.41 39 49 54 
Reading Comprehension 5 1.13 0 3 4 

In the above table of benchmarks for 60% RC accuracy, the revised approach incorporates 
individual subtask standard error estimates (Subtask SE), providing more precise confidence 
intervals (LCI and UCI) for each subtask. For example, the benchmark for ORF in EGRA Country 
4 Arabic Grade 2 is 20, with a narrower confidence interval of 12 to 28, compared to the 
broader intervals in the initial method. Similarly, in EGRA Ghana English Grade 2, the 
benchmark for ORF is 49, with a range of 39 to 54, showcasing the tighter bounds enabled by 
the subtask-specific SE. These narrower intervals indicate a more refined estimate of 
expected performance, reducing potential overgeneralization. For RC, however, the 
benchmarks and intervals remain consistent with the initial method, as expected, due to the 
focus on this skill as the reference point. 

Table 10. Rasch Accuracy IRT Benchmarks According to 80% RC and Subtask SE 

Assessment Subtask Item 𝜽𝜽𝑺𝑺𝑺𝑺 LCI Benchmark UCI 
EGRA Country 4 
Arabic Grade 2 

Oral Reading Fluency 42 0.42 19 27 34 
Reading Comprehension 5 1.21 1 4 5 

EGRA Country 6 
Arabic Grade 2 

Oral Reading Fluency 76 0.41 38 46 46 
Reading Comprehension 7 1.1 3 6 6 

EGRA Country 13 
Chitonga Grade 2 

Oral Reading Fluency 56 0.56 19 26 29 
Reading Comprehension 5 2.13 1 4 4 

EGRA Ghana 
English Grade 2 

Oral Reading Fluency 60 0.5 45 54 54 
Reading Comprehension 5 1.3 1 4 4 

The revised benchmarks for 80% RC accuracy also demonstrate the benefits of using subtask-
specific SE estimates. For example, in EGRA Country 6 Arabic Grade 2, the benchmark for ORF 
is 46, with a confidence interval of 38 to 46, compared to the broader intervals in the initial 
approach. Similarly, in EGRA Country 13 Chitonga Grade 2, the ORF benchmark is 26, with a 
confidence interval of 19 to 29, reflecting increased precision. This tighter interval suggests 
greater alignment with the expected ability levels. Across all assessments, the RC benchmarks 
remain the same as in the initial method, indicating consistency in the measurement of this 
anchor skill. Overall, the revised approach improves the precision of subtask benchmarks by 
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accounting for variability across individual subtasks, resulting in a more nuanced and accurate 
representation of expected performance at the 80% RC proficiency level. 

The reduction in SEs in the revised approach is attributable to the conceptual alignment of 
the benchmark estimation process with subtask-specific variability. Unlike the projection 
approach, which relies on a singular SE derived from the TIC of RC, the revised approach 
calculates SEs at the level of each subtask. This method explicitly accounts for the 
measurement precision of individual subtasks, as determined by the response patterns and 
item parameters associated with each precursor skill. By focusing on subtask-specific error 
variances, we achieve a more granular and accurate representation of uncertainty, as 
opposed to applying the broader, general SE derived from RC to all subtasks. 

The substantial reduction in SEs, such as the case for ORF in EGRA Country 13 (from 2.13 to 
0.56), stems from the more localized error estimates of the precursor tasks. The initial 
projection approach applied the SE of RC theta, effectively integrating noise across all 
subtasks, which inflates the error estimates for individual benchmarks. The revised method 
isolates the unique measurement error of each subtask, ensuring that the confidence 
intervals reflect the precision of the specific skill rather than the broader uncertainty of RC. 
This refined methodology is grounded in psychometric theory, particularly the notion that SEs 
should directly correspond to the variability inherent in the measurement of the target 
construct. Thus, the revised approach enhances the validity of the benchmarks by aligning the 
SEs with the actual measurement context, avoiding the artificial inflation of error margins and 
providing a clearer, more precise assessment framework. 

For example, looking at the case of EGRA Country 13: the SE for OR was 2.13 using the initial 
“projection” approach, is now only 0.56: a reduction by ¾.   

Rasch Accuracy - Generalized Linear Mixed Model (RA-GLMM) Approach 
To address the issues of large variability and confidence intervals associated with traditional 
fluency measures, Kara et al. (2020) proposed a novel latent-variable Bayesian model that 
jointly estimates ORF by simultaneously assessing accuracy and speed. Their model builds on 
the work of Potgieter et al. (2017), which in turn is an adaptation of the speed-accuracy model 
introduced by van der Linden (2007). The model proposed by Kara et al. (2020) expands on 
Potgieter et al.’s (2017) approach by integrating a binomial count factor model for accuracy 
and a lognormal factor model for speed that are combined through Bayesian estimation. This 
study expands on the work of Kara et al. (2020) by presenting a modified version of the 
accuracy component, which will be referred to as the Rasch Accuracy - Generalized Linear 
Mixed Model (RA-GLMM).  

Generalized Linear Mixed Model (GLMM) Approach 
In this study, a frequentist approach was employed over a Bayesian framework to analyze 
ORF, primarily due to the computational efficiency, simplicity, and suitability for large 
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datasets. Frequentist methods, such as generalized linear mixed models (GLMMS), use 
optimization-based algorithms like maximum likelihood estimation (MLE), which scale well 
with large datasets and reduce computational time. Unlike Bayesian methods, which require 
prior specification and rely on computationally intensive methods of estimation, frequentist 
approaches avoid the subjectivity of prior selection and focus solely on observed data. As a 
result, it was determined that a frequentist approach would provide a more transparent, 
scalable, and efficient method for model estimation, due to the large sample sizes providing 
sufficient information for parameter estimation. 
 
GLMMs have been widely used in explanatory item analyses to examine how various factors 
influence student performance and ability estimation (Crocker & Algina, 1986; Kutner, 
Nachtsheim, & Neter, 2004; van der Linden & Hambleton, 1997). Explanatory item analysis 
extends traditional item response modeling by incorporating predictors that explain 
variations in item difficulty, discrimination, and student ability. Unlike standard item response 
models that estimate item and person parameters as fixed values, explanatory item response 
models (EIRMs) integrate external variables, such as instructional interventions or cognitive 
processing strategies, to provide deeper insights into test performance. GLMMs are 
particularly useful for explanatory item analysis because they allow for the simultaneous 
estimation of fixed effects (e.g., overall test difficulty) and random effects (e.g., student 
ability, item variation). By modeling both person-level and item-level influences, GLMMs offer 
a flexible framework for understanding the factors that contribute to student performance 
beyond raw test scores. 
 
In this study, a GLMM approach was chosen because the distribution of total test scores and 
subtask scores did not have normal distributions, making standard linear models unsuitable. 
GLMMs provided a way to model non-normal response distributions while accounting for 
hierarchical dependencies in the data, such as students nested within schools or subtasks 
nested within assessments. Wilson et al. (2012) demonstrated how incorporating IRT into a 
GLMM framework allowed for the simultaneous estimation of student growth trajectories 
and item characteristics, illustrating the value of such models for explanatory item analysis. 
Similarly, Greenwood and Jesse (2014) applied GLMMs to analyze binary item responses in a 
longitudinal study, demonstrating how the approach allowed for a more precise estimation 
of ability changes over time. In this study, for consistency with the ORF model proposed by 
Kara et al. (2020) and to maintain computational efficiency, a binomial distribution was 
applied at the subtask level rather than modeling each item individually. 

RA-GLMM Estimation 

The RA-GLMM is much like the accuracy component of the latent ORF ability model proposed 
by Kara et al. (2020), in that it models the number of correct responses for a given subtask. 
However, in the model proposed by Kara et al. (2020) this is relegated only to ORF, in the 
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present study this is generalized to all subtasks. Expected accuracy is calculated using the 
following equations: 
 

𝐸𝐸�𝑈𝑈𝑖𝑖𝑖𝑖� =  𝑛𝑛𝑖𝑖 ∙ 𝑝𝑝(𝑈𝑈𝑖𝑖𝑖𝑖),  
 

𝑝𝑝�𝑈𝑈𝑖𝑖𝑖𝑖� = e1.7�𝜃𝜃𝑖𝑖𝑖𝑖−𝑏𝑏𝑖𝑖� 

1+e1.7�𝜃𝜃𝑖𝑖𝑖𝑖−𝑏𝑏𝑖𝑖� 
, 

 
where: 

• 𝑏𝑏𝑖𝑖 is the difficulty parameter of subtask 𝑖𝑖, 
• 𝜃𝜃𝑖𝑖𝑖𝑖 is the latent accuracy ability of person 𝑗𝑗 on subtask 𝑖𝑖, 
• 1.7 is a scaling constant value which adjusts the logistic function to approximate the 

normal ogive model by accounting for the difference in their variances with 1.7 ≈
 𝜋𝜋/√3 to ensure comparable item difficulty estimates (Baker & Kim, 2004),  

• 𝑈𝑈𝑖𝑖𝑖𝑖 is a proportion of correct responses on subtask 𝑖𝑖 for person 𝑗𝑗. 
• and 𝑛𝑛𝑖𝑖  is the total possible score on subtask 𝑖𝑖. 

The expression e1.7�𝜃𝜃𝑖𝑖𝑖𝑖−𝑏𝑏𝑖𝑖� represents the odds of achieving a perfect score on the subtask 

based on the student’s ability and the subtask difficulty, and e1.7�𝜃𝜃𝑖𝑖𝑖𝑖−𝑏𝑏𝑖𝑖� 

1+e1.7�𝜃𝜃𝑖𝑖𝑖𝑖−𝑏𝑏𝑖𝑖� 
 converts the odds 

into a probability (via logistic transformation). Multiplying this probability by 𝑛𝑛𝑖𝑖  provides the 
expected score the student will achieve on the subtask. An explanation of the process is as 
follows: 
 

• 𝜃𝜃𝑖𝑖𝑖𝑖 is extracted from a mixed-effects logistic regression model that uses the observed 
total test score as the response variable and includes a random effect for each student. 

o The model predicts the probability of a correct response proportion for the 
entire test: 
 

logit(𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) =  𝜃𝜃𝑗𝑗 + 𝑢𝑢𝑗𝑗 , 
 

o Where: 
 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the probability of a proportion of correct responses for student 

𝑗𝑗 on the entire assessment (including all subtasks). 
 𝜃𝜃𝑗𝑗  is the latent ability of student 𝑗𝑗 (fixed effect). 
 𝑢𝑢𝑗𝑗  is the random effect for student 𝑗𝑗, representing unexplained 

variance. 
• 𝑏𝑏𝑖𝑖 is derived from a logistic regression model that uses theta as the predictor for 

observed scores. 
• The logistic transformation ensures that the probability of subtask score 𝑝𝑝�𝑈𝑈𝑖𝑖𝑖𝑖� lies 

between 0 and 1. 
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• The expected probability 𝑝𝑝�𝑈𝑈𝑖𝑖𝑖𝑖� is multiplied by the subtask’s maximum score 𝑛𝑛𝑖𝑖  to 
calculate the expected subtask score. 

Interpretively, the accuracy component of the RA-GLMM is as follows: 
 

• As 𝜃𝜃𝑖𝑖𝑖𝑖 increases (indicating higher student ability), the expected accuracy (𝐸𝐸�𝑈𝑈𝑖𝑖𝑖𝑖�) 
increases, reflecting a higher likelihood of increased accuracy. 

• Passages with higher difficulty 𝑏𝑏𝑖𝑖 lower the expected accuracy for all students, as the 
logistic function shifts higher.  

• The passage length determines the upper bound of the expected accuracy, ensuring 
consistency across passages of varying lengths. 

RA-GLMM TCC 

The total test characteristic curve (TCC) is the sum of the expected scores for all subtasks: 

𝑻𝑻𝑻𝑻𝑻𝑻(𝜽𝜽) =  ∑ 𝒏𝒏𝒊𝒊 ∙ 𝒑𝒑(𝑼𝑼𝒊𝒊)𝒊𝒊 , 

The standard error at a given 𝜽𝜽 is derived from the variance of the TCC. Since the subtasks are 
assumed to be independent, the variance of the total score is the sum of the variances of the 
scores for each subtask. The SE for the total score is then: 

𝑺𝑺𝑺𝑺(𝜽𝜽𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕) =  �∑ 𝑽𝑽𝑽𝑽𝑽𝑽(𝒊𝒊 𝑼𝑼𝒊𝒊). 

However, to calculate the SE of 𝜽𝜽 for each subtask 𝒊𝒊, the information function of the logistic 
model must be employed (like the IRT approach). The Fisher Information (𝑰𝑰(𝜽𝜽)) for a subtask 
is given by:  

𝑰𝑰(𝜽𝜽) = 𝟏𝟏.𝟕𝟕𝟐𝟐 ∙ 𝒏𝒏𝒊𝒊𝟐𝟐 ∙ 𝒑𝒑(𝑼𝑼𝒊𝒊) ∙ (𝟏𝟏 −  𝒑𝒑(𝑼𝑼𝒊𝒊)), 

Where:  
• 𝐼𝐼(𝜃𝜃) is the Fisher information at a given 𝜃𝜃. 
• 𝑝𝑝(𝑈𝑈𝑖𝑖) is the probability of a proportion of correct responses on subtask 𝑖𝑖. 
• 𝑛𝑛𝑖𝑖  is the maximum score for the subtask. 

Thus, the standard error is the inverse of the square root of the Fisher information:  
 

𝑆𝑆𝑆𝑆(𝜃𝜃𝑖𝑖) =  1
�𝐼𝐼(𝜃𝜃)

. 

 
Consequently, the confidence intervals for the RA-GLMM accuracy component can be 
calculated by 𝜃𝜃𝑅𝑅𝑅𝑅  ± 1.96 × 𝑆𝑆𝑆𝑆(𝜃𝜃𝑖𝑖), closely resembling the IRT method. 

Summary of RA-GLMM and Attributes 

The RA-GLMM was developed to provide a more stable and interpretable approach to 
benchmarking student performance on subtasks, particularly in foundational literacy 
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assessments. Traditional fluency measures often exhibit large variability and wide confidence 
intervals, making it difficult to set consistent benchmarks. To address this, Kara et al. (2020) 
introduced a latent-variable Bayesian model that jointly estimates accuracy and speed. This 
study builds on this approach by modifying the accuracy component and applying a GLMM 
framework instead of a Bayesian estimation approach. The GLMM approach was chosen for 
its computational efficiency and scalability, especially when working with large datasets 
where Bayesian methods may be impractical. By using a binomial distribution for subtask-
level scores rather than modeling each item individually, the RA-GLMM simplifies parameter 
estimation while maintaining alignment with the Rasch modeling framework. 

The choice to use a GLMM was also driven by the fact that the distributions of total test scores 
and subtask scores did not closely follow a normal distribution, making standard linear models 
unsuitable. GLMMs allow for the modeling of non-normal response distributions while 
accounting for hierarchical dependencies, such as subtasks nested within assessments. The 
RA-GLMM takes advantage of these strengths by estimating expected accuracy at the subtask 
level, ensuring that benchmark-setting is both statistically sound and practically interpretable. 

RA-GLMM Results  

The data were analyzed using the R software package lme4 (Bates et al., 2015), with the 
bound optimization by quadratic approximation (BOBYQA) optimizer and a maximum of 
100,000 function evaluations to ensure convergence, which employs a frequentist mixed-
effects modeling approach through MLE to fit GLMMs. The BOBYQA optimizer is a derivative-
free optimization method that is generally better suited for handling convergence issues in 
mixed models (Powell, 2009). This method allows for the inclusion of both fixed and random 
effects, enabling the accurate modeling of hierarchical or clustered data structures, such as 
repeated measures or student-level variability. Students that read at least one correctly and 
used less than 10 seconds of time were excluded from the analysis as it was determined that 
at least 10 seconds would be considered sufficient to provide reliable estimates. 
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Table 10. Rasch Accuracy GLMM Benchmarks According to 60% RC and Subtask SE 

Assessment Subtask Item 𝜽𝜽𝑺𝑺𝑺𝑺 LCI Benchmark UCI 

EGRA Country 4 
Arabic Grade 2 

Oral Reading Fluency 42 0.03 21 22 23 
Reading Comprehension 5 0.24 2 3 4 

EGRA Country 6 
Arabic Grade 2 

Oral Reading Fluency 76 0.02 29 29 30 
Reading Comprehension 7 0.17 3 4 5 

EGRA Country 13 
Chitonga Grade 2 

Oral Reading Fluency 56 0.03 9 9 10 
Reading Comprehension 5 0.24 2 3 4 

EGRA Ghana 
English Grade 2 

Oral Reading Fluency 60 0.02 46 47 48 
Reading Comprehension 5 0.24 2 3 4 

 
The table above presents benchmarks derived from the RA-GLMM. The key differences 
between these results and those of the Rasch Accuracy IRT method are reflected in the 
benchmark values, LCI, and UCI for each subtask and assessment. For ORF, the GLMM-derived 
benchmarks tend to have narrower confidence intervals (e.g., EGRA Country 4 Arabic Grade 
2: LCI = 21, UCI = 23) compared to the IRT-derived benchmarks (LCI = 12, UCI = 28). This 
suggests that the GLMM approach may produce more precise estimates for the benchmarks. 
Similarly, the GLMM benchmarks for RC are consistent, with minimal variability across 
assessments (e.g., EGRA Country 6 Arabic Grade 2: Benchmark = 4, UCI = 5), whereas the IRT 
model exhibits broader intervals and variability (e.g., the same assessment: Benchmark = 4, 
UCI = 6). 
 
The 𝜃𝜃𝑆𝑆𝑆𝑆 column highlights notable differences in standard errors between the two models. 
The GLMM approach consistently produces smaller standard errors (e.g., EGRA Country 6 
Arabic Grade 2 ORF: 0.02) than the IRT model (e.g., same assessment ORF: 0.45). Overall, the 
GLMM benchmarks display tighter ranges and reduced variability compared to the IRT 
benchmarks, suggesting that the GLMM method may offer greater precision and consistency. 
However, the broader intervals in the IRT model could indicate a more conservative 
estimation approach, capturing greater uncertainty in the data. These differences highlight 
the importance of selecting an appropriate modeling technique based on the assessment 
goals and data characteristics. 

Table 11. Rasch Accuracy GLMM Benchmarks According to 80% RC and Subtask SE 

Assessment Subtask Item 𝜽𝜽𝑺𝑺𝑺𝑺 LCI Benchmark UCI 

EGRA Country 4 
Arabic Grade 2 

Oral Reading Fluency 42 0.03 31 32 32 
Reading Comprehension 5 2.4 3 4 5 

EGRA Country 6 
Arabic Grade 2 

Oral Reading Fluency 76 0.02 55 56 57 
Reading Comprehension 7 2.15 5 6 7 

EGRA Country 13 
Chitonga Grade 2 

Oral Reading Fluency 56 0.02 19 19 20 
Reading Comprehension 5 1.88 3 4 5 

EGRA Ghana 
English Grade 2 

Oral Reading Fluency 60 0.03 54 54 55 
Reading Comprehension 5 2.51 3 4 5 
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The table above compares benchmarks derived from GLMM for 80% RC. For ORF, GLMM 
consistently produces higher benchmark values with narrower CI than Rasch Accuracy IRT 
estimates, indicating greater precision. For example, in EGRA Country 6 Arabic Grade 2, the 
GLMM benchmark is 56 with a CI range of 55–57, compared to the IRT benchmark of 46 with 
a broader CI range of 38–46. Similar trends are observed in other assessments, such as EGRA 
Country 4 Arabic Grade 2, where GLMM produces a benchmark of 32 with a tight CI range of 
31–32, while IRT yields a lower benchmark of 27 and a wider CI range of 19–34. 

For RC, GLMM also demonstrates more consistent benchmarks across assessments with 
relatively narrower confidence intervals. For instance, in EGRA Ghana English Grade 2, the 
GLMM benchmark is 4 with a CI range of 3–5, while the IRT benchmark shows greater 
variability with a CI range of 1–4. Although SE for RC are slightly higher in GLMM compared 
to IRT (e.g., 2.4 for EGRA Country 4 Arabic Grade 2 in GLMM versus 1.21 in IRT), GLMM still 
maintains better overall precision. 

The narrower CI widths in GLMM highlight its reliability, particularly for ORF, where the SEs 
are significantly smaller (e.g., 0.02–0.03) compared to IRT (e.g., 0.41–0.56). For RC, while both 
models display wider CIs, GLMM generally provides tighter ranges, offering more reliable 
benchmarks. In contrast, IRT’s broader CIs and lower benchmarks reflect a more conservative 
approach, which captures greater variability but sacrifices precision.  

Figure 8. Reading Comprehension (RC) TCC’s: Country 4 Arabic Grade 2 

 
The figure above compares ability estimates and observed reading comprehension scores 
using the RA-IRT and RA-GLMM methods. In the RA-IRT model, ability estimates are more 
widely distributed, meaning there is greater variability, but they align closely with the test 
characteristic curve. In contrast, the RA-GLMM model produces a more compressed range of 
estimates, resulting in tighter standard errors and greater precision.  
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Figure 9. Oral Reading Fluency (ORF) TCC’s: Country 4 Arabic Grade 2 

 

The figure above compares estimated ability and observed ORF scores using the RA-IRT and 
RA-GLMM methods. The RA-IRT model shows a wider spread of ability estimates, allowing for 
greater variability across students while still aligning closely with the test characteristic curve. 
In contrast, the RA-GLMM model produces a more compressed distribution of ability 
estimates, leading to tighter standard errors and more precise predictions. Despite these 
differences, both methods yield similar benchmark placements for 60% and 80% RC accuracy. 

Figure 10. Reading Comprehension (RC) TCC’s: Country 6 Arabic Grade 2 

 
The figure above compares estimated ability and observed RC scores for RA-IRT and RA-
GLMM methods in EGRA Country 6 Arabic Grade 2. The RA-IRT model produces a wider spread 
of ability estimates, capturing more variability across students while still aligning with the test 
characteristic curve. The RA-GLMM model, on the other hand, constrains ability estimates 
more tightly, leading to lower standard errors and greater precision. 



 

41 
 

Figure 11. Oral Reading Fluency (ORF) TCC’s: Country 6 Arabic Grade 2 

 

The figure above compares estimated ability and observed ORF scores for RA-IRT and RA-
GLMM methods in EGRA Country 6 Arabic Grade 2. The RA-IRT model shows a wider spread 
of ability estimates, capturing greater variability in student performance while aligning closely 
with the test characteristic curve. In contrast, the RA-GLMM model produces a more 
constrained distribution of ability estimates, resulting in lower standard errors and more 
precise predictions. This suggests that while IRT allows for a broader range of ability levels, 
GLMM stabilizes estimates by reducing variability. Despite these differences, both models 
place the 60% and 80% RC benchmarks in similar locations. 

Figure 12. Reading Comprehension (RC) TCC’s: Country 13 Chitonga Grade 2 

 
The figure above compares estimated ability and observed RC scores for RA-IRT and RA-
GLMM methods in EGRA Country 13 Chitonga Grade 2. The RA-IRT model displays a wider 
distribution of ability estimates, capturing greater variability among students while closely 
following the test characteristic curve. The RA-GLMM model, in contrast, constrains ability 
estimates more tightly, resulting in lower SEs and more precise predictions. 
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Figure 13. Oral Reading Fluency (ORF) TCC’s: Country 13 Chitonga Grade 2 

 
The figure above compares estimated ability and observed ORF scores for RA-IRT and RA-
GLMM methods in EGRA Country 13 Chitonga Grade 2. The RA-IRT model shows a wider 
spread of ability estimates, capturing more variability among students while aligning closely 
with the test characteristic curve. In contrast, the RA-GLMM model constrains ability 
estimates more tightly, resulting in lower SEs and greater precision. Despite these differences, 
both models place the 60% and 80% RC benchmarks in similar locations. 

Figure 14. Reading Comprehension (RC) TCC’s: Ghana English Grade 2 

 
The figure above compares estimated ability and observed RC scores for RA-IRT and RA-
GLMM methods in EGRA Ghana English Grade 2. The RA-IRT model shows a wider distribution 
of ability estimates, capturing more variability across students while still aligning with the test 
characteristic curve. In contrast, the RA-GLMM model constrains ability estimates more 
tightly, leading to lower SEs and more precise predictions. 
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Figure 15. Oral Reading Fluency (ORF) TCC’s: Ghana English Grade 2 

 
The figure above compares estimated ability and observed ORF scores for RA-IRT and RA-
GLMM methods in EGRA Ghana English Grade 2. The RA-IRT model shows a wider spread of 
ability estimates, capturing greater variability among students while aligning closely with the 
test characteristic curve. In contrast, the RA-GLMM model produces a more constrained 
distribution of ability estimates, leading to lower SEs and more precise predictions. Despite 
these differences, both models place the 60% and 80% reading comprehension benchmarks 
in similar locations. 

Method Selection for Benchmarking 
Although the GLMM approach demonstrated superior performance compared to the Rasch 
IRT and classical methods in terms of the results obtained, it is not without its limitations. The 
RA-GLMM approach, while flexible and capable of modeling complex data structures, has 
significant limitations when applied to benchmark estimation in educational assessments. 
One major drawback is its inability to account for item-level differences explicitly. In a GLMM 
framework, the primary focus is on aggregating responses across individuals and items 
without directly modeling the unique characteristics of each item. This means that variations 
in item difficulty, discrimination, or other item parameters are not incorporated into the 
model. As a result, GLMM tends to treat all items as if they contribute equally to the 
estimation of ability, which can lead to biased or imprecise results, particularly in assessments 
where item-level differences are substantial. By ignoring these nuances, GLMM may fail to 
capture critical aspects of the data that influence the accuracy of ability estimates. 

In contrast, the Rasch IRT model offers a more robust framework by calibrating all items 
simultaneously and placing them on a common ability scale. This simultaneous calibration 
ensures that item-level differences, such as varying levels of difficulty, are explicitly accounted 
for in the estimation process. By anchoring the ability scale to the characteristics of the items, 
the Rasch approach provides a unified and interpretable measurement system where the 
estimated ability of an individual is directly comparable across all items in the assessment. 
This is particularly advantageous in educational contexts where tests may consist of items 
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with differing levels of complexity or partial credit scoring. The Rasch model's ability to place 
items and individuals on the same scale facilitates more accurate benchmarking and ensures 
that the interpretation of scores is consistent across varying test forms or populations. 

Another critical advantage of the Rasch approach is its capacity to provide invariant 
measurement, which ensures that the ability estimates are independent of the specific items 
used and vice versa. This invariance is not guaranteed in GLMM because the model does not 
explicitly calibrate items or link them to a shared scale. Furthermore, Rasch's focus on 
calibrating all items simultaneously enables a deeper understanding of item functioning and 
test performance, including the detection of misfitting items or differential item functioning 
(DIF) across subpopulations. These insights are crucial for ensuring the fairness and validity of 
assessments. In contrast, GLMM's reliance on aggregated measures can obscure such issues, 
potentially leading to misleading conclusions about student ability or test quality. Ultimately, 
while GLMM may be useful for simpler applications, the Rasch approach's explicit attention 
to item-level differences and its simultaneous calibration of items make it a superior choice 
for rigorous, fair, and interpretable benchmarking in educational assessments. 

Section 5: Data Analysis of Additional Countries and Languages 
Using Accuracy-Based Model 
 

After assessing the suitability of various methods using a limited set of four test cases 
consisting of language-country pairing, the study shifted focus to benchmarking analysis for 
the broader range of languages in the datasets provided by UIS. Our approach began with the 
establishment of basic reliability parameters for all the language-country combinations, 
followed by the benchmark estimation process.  

Table 12. EGRA – Reliability by Assessment 

Assessment N Alpha 

EGRA Country 4 Arabic Grade 2 615 0.988 
EGRA Country 6 Arabic Grade 2 713 0.986 
EGRA Country 7 Chichewa Grade 2 713 0.987 
EGRA Country 10 Kinyarwanda Grade 2 615 0.993 
EGRA Country 11 Swahili Grade 2 713 0.990 
EGRA Country 13 Chitonga Grade 2 615 0.988 
EGRA Country 13 Cinyanja Grade 2 615 0.988 
EGRA Country 13 Icibemba Grade 2 615 0.987 
EGRA Country 13 Kikaonde Grade 2 615 0.987 
EGRA Country 13 Lunda Grade 2 615 0.989 
EGRA Country 13 Luvale Grade 2 615 0.989 
EGRA Country 13 Silozi Grade 2 615 0.988 
EGRA Ghana English Grade 2 713 0.988 

Ok, s  
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The table above presents the number of observations (N) and reliability estimates (Cronbach's 
Alpha) for various Grade 2 assessments across different countries and languages. The data 
reflects high reliability across all assessments, with Cronbach's Alpha values ranging from 
0.986 to 0.993. These values indicate excellent internal consistency, suggesting that the items 
within each assessment are highly correlated and measure the same underlying construct 
effectively. Columns with no variance were removed prior to generating this summary.  

Among the assessments, EGRA Country 10 Kinyarwanda Grade 2 stands out with the highest 
reliability estimate (Alpha = 0.993). Other assessments, such as those for EGRA Country 6 
Arabic Grade 2 (Alpha = 0.986) and EGRA Country 13 Icibemba Grade 2 (Alpha = 0.987), also 
show strong reliability, though slightly lower. The consistent high Alpha values across 
assessments and languages underscore the robustness of the test instruments used, 
reflecting their suitability for measuring student abilities across diverse contexts. 

Table 13. EGRA – RC and ORF Item-Test Correlation by Assessment 

Assessment RC1 RC2 RC3 RC4 RC5 RC6 RC7 ORF 
Country 4 Arabic 0.41 0.32 0.06 0.26 0.25     0.77 
Country 6 Arabic 0.47 0.42 0.19 0.34 0.01 0.35 0.3 0.91 
Country 7 Chichewa 0.74 0.78           0.66 
Country 10 Kinyarwanda 0.11 0.14 0.12 0.1 0.17     0.44 
Country 11 Swahili 0.33 0.33 0.21 0.16 0.46     0.96 
Country 13 Chitonga 0.48 0.61 0.46 -0.03 -0.27     0.89 
Country 13 Cinyanja 0.71 0.53 0.42 0.37       0.92 
Country 13 Icibemba 0.53 0.41 0.13 0.49 1     0.9 
Country 13 Kikaonde 0.61 0.48 0.28 0.34 -0.56     0.87 
Country 13 Lunda 0.72 0.6 0.29 0.15 -0.03     0.94 
Country 13 Luvale 0.77 0.51 0.57 0.55 -0.88     0.95 
Country 13 Silozi 0.43 0.54 0.45 0.65       0.93 
Ghana English 0.55 0.6 0.43 0.39 0.25     0.92 

The table above presents the item-test correlation coefficients for RC (RC1-RC7) and ORF 
across various EGRA assessments. The correlations provide insight into the alignment 
between individual items and the overall test performance for each assessment. Assessments 
like Country 11 Swahili and Country 13 Luvale exhibit consistently high RC correlations, with 
values reaching up to 0.77 for RC1 and RC5, and strong ORF correlations of 0.96 and 0.95, 
respectively. Most assessments show moderate to strong ORF correlations (0.77 to 0.96), with 
notable exceptions like Country 7 Chichewa (0.66).  

Table 14. EGRA - Bartlett’s Test of Sphericity  

Assessment Chi-Sq P df 
Country 4 Arabic Grade 2 17861 <.001 21 
Country 6 Arabic Grade 2 9182 <.001 15 
Country 7 Chichewa Grade 2 3212 <.001 6 
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Country 10 Kinyarwanda Grade 2 7316 <.001 15 
Country 11 Swahili Grade 2 37606 <.001 6 
Country 13 Chitonga Grade 2 5072 <.001 15 
Country 13 Cinyanja Grade 2 12215 <.001 15 
Country 13 Icibemba Grade 2 6834 <.001 15 
Country 13 Kikaonde Grade 2 3591 <.001 15 
Country 13 Lunda Grade 2 8571 <.001 15 
Country 13 Luvale Grade 2 5805 <.001 15 
Country 13 Silozi Grade 2 8463 <.001 15 
Ghana English Grade 2 4572 <.001 10 

The results of Bartlett’s Test of Sphericity for the EGRA assessments across various languages 
and countries indicate statistically significant Chi-square values (p = 0 for all tests), suggesting 
that the correlation matrices are appropriate for factor analysis. Notably, the Chi-square 
values range from 3,212 (Country 7 Chichewa Grade 2) to 37,606 (Country 11 Swahili Grade 
2), with degrees of freedom varying between 6 and 21. These findings confirm the suitability 
of the datasets for exploring underlying latent structures, reinforcing the validity of 
proceeding with further multivariate analyses for these assessments. 

Table 15. EGRA - Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy 

Assessment Overall LC LS SS INW ORF RC SRC 
Country 4 Arabic   0.81 0.83 0.78 0.88 0.82 0.75 0.73 0.90 
Country 6 Arabic   0.81 0.85 0.83 

 
0.83 0.77 0.80 

 

Country 7 Chichewa   0.63 
  

0.62 
 

0.64 0.64 
 

Country 10 Kinyarwanda   0.81 0.72 
 

0.78 
 

0.87 0.90 
 

Country 11 Swahili   0.86 
  

0.87 0.83 0.83 0.91 
 

Country 13 Chitonga   0.84 0.93 0.93 0.83 0.82 0.80 0.84 
 

Country 13 Cinyanja   0.85 0.85 0.88 0.83 0.87 0.82 0.89 
 

Country 13 Icibemba   0.85 0.91 0.90 0.92 0.83 0.78 0.87 
 

Country 13 Kikaonde   0.83 0.95 0.79 0.79 0.93 0.87 0.81 
 

Country 13 Lunda   0.88 0.95 0.97 0.89 0.87 0.84 0.88 
 

Country 13 Luvale   0.87 0.94 0.91 0.89 0.87 0.82 0.89 
 

Country 13 Silozi   0.86 0.93 0.90 0.87 0.83 0.81 0.94 
 

Ghana English   0.80 0.89 0.84 
 

0.83 0.74 0.76 
 

This table presents reliability coefficients for various EGRA across multiple countries and 
languages, focusing on overall reliability and subtest-level reliability. Overall reliability values 
range from 0.63 (Country 7 Chichewa) to 0.88 (Country 13 Lunda), demonstrating generally 
high reliability for most assessments. Subtest-level reliability coefficients also reflect 
consistency, with LC, LS, SS, INW, ORF, RC, and SRC showing strong internal consistency for 
most countries. Notable variability exists in lower coefficients for some subtests in Country 7 
Chichewa, suggesting areas for further investigation or improvement. Overall, the data 
highlights the robustness of the assessment tools across diverse linguistic and cultural 
contexts. 
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Figure 16. EGRA - Scree Plot 

 

This scree plot depicts the eigenvalues for various components across multiple EGRA 
assessments, allowing for visual comparison of the explained variance by each principal 
component. For most assessments, the first component explains most of the variance, as 
indicated by the sharp drop in eigenvalues from Component 1 to Component 2. The 
consistent shape across assessments indicates homogeneity in the dimensionality of reading-
related constructs measured across countries. The rapid decline of eigenvalues reinforces the 
appropriateness of focusing on fewer components for subsequent analysis, particularly for 
reducing dimensionality without significant loss of information.  

Table 16. EGRA - Principal Components Analysis (PCA) 

Assessment 𝝀𝝀 F1 % Var L1 L2 L3 L4 L5 L6 L7 
Country 4 Arabic  4.41 0.63 0.48 0.64 0.88 0.87 0.92 0.85 0.81 
Country 6 Arabic  3.38 0.56 0.45 

  
0.85 0.91 0.83 

 

Country 7 Chichewa  2.90 0.72 
       

Country 10 Kinyarwanda  3.29 0.55 0.23 
 

0.92 
 

0.84 0.87 
 

Country 11 Swahili  3.54 0.88 
       

Country 13 Chitonga  3.96 0.66 0.32 0.73 0.92 0.94 0.93 0.85 
 

Country 13 Cinyanja  4.04 0.67 0.34 0.73 0.95 0.94 0.95 0.84 
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Country 13 Icibemba  3.95 0.66 0.40 0.65 0.87 0.95 0.94 0.91 
 

Country 13 Kikaonde  3.53 0.59 0.40 0.71 0.91 0.75 0.85 0.87 
 

Country 13 Lunda  4.33 0.72 0.44 0.72 0.95 0.96 0.96 0.94 
 

Country 13 Luvale  4.39 0.73 0.45 0.78 0.96 0.95 0.96 0.92 
 

Country 13 Silozi  3.92 0.65 0.34 0.70 0.94 0.94 0.94 0.80 
 

Ghana English  3.22 0.64 0.63 0.76 
     

This table presents the results of PCA for the EGRA assessments, summarizing the first factor’s 
explained variance percentage (F1 % Var) and loadings across multiple components (L1 to L7) 
for each assessment. The explained variance by the first factor (F1 % Var) varies across 
assessments, ranging from 2.90 in Country 7 Chichewa to 4.41 in Country 4 Arabic, indicating 
that the first factor captures a substantial proportion of the variance in the data. Assessments 
such as Country 13 Luvale and Country 13 Lunda exhibit high explained variance (4.39 and 
4.33, respectively), suggesting a strong single-dimension structure.  

Table 17. EGRA - Accuracy Benchmarks According to 60% RC and Subtask SE 

Assessment Subtask Item 𝜽𝜽𝑺𝑺𝑺𝑺 LCI Benchmark UCI 

Country 4 Arabic 
Oral Reading 1 0.42 12 20 28 
Reading Comprehension 5 1.03 0 3 5 

Country 6 Arabic 
Oral Reading 1 0.45 29 36 44 
Reading Comprehension 7 1.04 2 4 6 

Country 7 Chichewa 
Oral Reading 1 0.45 11 17 17 
Reading Comprehension 4 5.24 0 2 2 

Country 10 Kinyarwanda 
Oral Reading 1 0.58 26 37 39 
Reading Comprehension 5 1.05 1 3 5 

Country 11 Swahili 
Oral Reading 1 0.53 17 24 30 
Reading Comprehension 5 1.25 0 3 5 

Country 13 Chitonga 
Oral Reading 1 0.47 9 16 23 
Reading Comprehension 5 1.22 1 3 4 

Country 13 Cinyanja 
Oral Reading 1 0.57 17 23 29 
Reading Comprehension 5 1.21 0 3 4 

Country 13 Icibemba 
Oral Reading 1 0.52 6 12 18 
Reading Comprehension 5 1.48 0 3 4 

Country 13 Kikaonde 
Oral Reading 1 0.47 11 18 25 
Reading Comprehension 5 1.57 0 3 4 

Country 13 Lunda 
Oral Reading 1 0.53 8 14 20 
Reading Comprehension 5 1.4 1 3 5 

Country 13 Luvale 
Oral Reading 1 0.58 16 23 29 
Reading Comprehension 5 1.35 1 3 4 

Country 13 Silozi 
Oral Reading 1 0.54 21 27 33 
Reading Comprehension 5 1.73 1 3 4 

Ghana English 
Oral Reading 1 0.41 39 49 54 
Reading Comprehension 5 1.13 0 3 4 
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The table above highlights the variation in ORF benchmarks across different assessments. 
These benchmarks, based on achieving a 60% RC threshold, show significant differences 
between languages and contexts. For example, Ghana English exhibits the highest benchmark 
at 49 words, with a CI ranging from 39 to 54 words, indicating higher expectations for reading 
fluency. In contrast, assessments such as Country 13 Icibemba and Country 13 Chitonga have 
lower benchmarks, at 12 and 16 words respectively, with narrower CI. Countries like Country 
6 Arabic and Country 10 Kinyarwanda also display relatively high benchmarks at 36 and 37 
words, suggesting a higher standard of oral fluency compared to other contexts. Conversely, 
several assessments, including Country 7 Chichewa and Country 13 Kikaonde, show moderate 
benchmarks of 17 and 18 words, reflecting more conservative expectations for fluency.  

Table 18. EGRA - Benchmarks According to 80% RC and Subtask SE 

Assessment Subtask Item 𝜽𝜽𝑺𝑺𝑺𝑺 LCI Benchmark UCI 

Country 4 Arabic 
Oral Reading 1 0.42 19 27 34 
Reading Comprehension 5 1.21 1 4 5 

Country 6 Arabic 
Oral Reading 1 0.41 38 46 46 
Reading Comprehension 7 1.1 3 6 6 

Country 7 Chichewa 
Oral Reading 1 0.45 11 17 17 
Reading Comprehension 4 5.24 0 3 3 

Country 10 Kinyarwanda 
Oral Reading 1 0.96 26 39 40 
Reading Comprehension 5 1.21 1 4 5 

Country 11 Swahili 
Oral Reading 1 0.59 23 29 35 
Reading Comprehension 5 1.39 1 4 5 

Country 13 Chitonga 
Oral Reading 1 0.56 19 26 29 
Reading Comprehension 5 2.13 1 4 4 

Country 13 Cinyanja 
Oral Reading 1 0.57 29 34 34 
Reading Comprehension 5 5.2 0 4 4 

Country 13 Icibemba 
Oral Reading 1 0.54 17 23 29 
Reading Comprehension 5 2.26 1 4 4 

Country 13 Kikaonde 
Oral Reading 1 0.45 21 29 31 
Reading Comprehension 5 1.46 2 4 4 

Country 13 Lunda 
Oral Reading 1 0.56 14 21 26 
Reading Comprehension 5 1.45 1 4 5 

Country 13 Luvale 
Oral Reading 1 0.56 24 30 30 
Reading Comprehension 5 1.74 1 4 4 

Country 13 Silozi 
Oral Reading 1 0.59 27 33 33 
Reading Comprehension 5 1.93 1 4 4 

Ghana English 
Oral Reading 1 0.5 45 54 54 
Reading Comprehension 5 1.3 1 4 4 

The table above highlights the benchmarks for ORF derived from an 80% RC threshold, 
emphasizing variability across assessments. Ghana English displays the highest ORF 
benchmark at 54 correct words, with a CI ranging from 45 to 54, reflecting the highest fluency 
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expectations among the assessments. Country 6 Arabic follows with a benchmark of 46 
correct words (CI: 38–46), while other assessments such as Country 10 Kinyarwanda and 
Country 13 Cinyanja exhibit moderate benchmarks of 39 and 34 correct words, respectively. 

In contrast, some assessments have lower ORF benchmarks, such as Country 13 Lunda (21 
correct words, CI: 14–26) and Country 13 Chitonga (26 correct words, CI: 19–29). Country 7 
Chichewa displays the lowest benchmark at 17 correct words (CI: 11–17), highlighting varied 
expectations for reading fluency across languages and contexts. These differences underscore 
the diverse linguistic and educational environments influencing reading performance and 
benchmarks.  

Section 6: Conclusions and Summary 

The primary objective of this study has been to integrate recently developed foundational 
literacy assessments—which are typically one-on-one, oral, and have conceptually complex 
test “item” frameworks—into a more rigorous and comparably psychometric framework for 
analysis. The significance of this task extends beyond a technical or academic exercise—it is 
crucial for linking assessments to globally agreed MPLs and fulfilling the SDG mandate for 
comparability, even in cases where assessments were not originally designed with such 
comparability.  
 
In summary, the findings from Sections 3 and 4 confirm that IRT is a reliable and effective 
method for setting benchmarks in literacy assessments, particularly for RC and ORF. 
Specifically, the Rasch model enhances our understanding of student ability by incorporating 
test item difficulty and providing a unified measure of “foundational reading skill” that 
encompasses both comprehension and precursor skills. 
 
In contrast, GLMM, while computationally efficient, lacks the ability to capture differences 
between test items, making it less suitable for benchmark setting in educational assessments. 
However, the study also finds that IRT-derived CIs can be wider than what is considered 
technically satisfactory for reading science application, despite being acceptable from a 
psychometric standpoint.  
 
When comparing different benchmarking approaches, it is essential to consider the tradeoffs 
in information utilization: 

• Traditional benchmark setting relies on subject matter experts, providing precise but 
data-independent benchmarks. 

• GLMM benchmarks leverage data and sample performance for high precision, but do 
not account for individual item difficulty. 
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• IRT-based benchmarks balance data context, sample performance and item-level 
performance, making it the most comprehensive approach despite potentially lower 
technical precision. 

Thus, while IRT may be less precise than traditional methods, it makes the best use of 
available data and provides a more accurate representation of student ability. 
 
Another major contribution of this study is the classical analysis of assessment 
unidimensionality and the integrity of literacy skill components within the broader latent 
construct of “foundational reading skill.” The study modeled precursor skills with RC, and the 
findings suggest that some skills—such as accuracy and ORF in connected text—serve as 
stronger predictors of RC than others, such as LS or LC. Even so, the set of skills measured by 
these assessments provide a great deal of reliability and unidimensionality. Additionally, 
some of the item differences appear to be sample- or curriculum-dependent, indicating the 
need for consideration as reading science experts deliberate further refinement of MPLs and 
the GPF using empirical psychometric analysis not previously available.   
 
Finally, this study represents the largest compilation of foundational reading data available, 
with one possible exception being Crawford et al. (2024). However, unlike Crawford’s work, 
which focuses solely on reading science, this study conducted psychometric analyses on the 
data—assessments in 32 languages across eight countries. The study revealed language-
group patterns that become apparent only when analyzing a large data set. While the study 
models just four language groups, this approach can be expanded as additional data becomes 
available. In parallel, UIS is conducting linguistic and reading sciences analyses (and later math 
science) to establish non-psychometric aspects of language group analysis.   

Suitability of IRT for Benchmark Setting 
IRT’s is particularly useful in benchmark setting because it models the probabilistic 
relationship between student ability and item difficulty, creating a continuous, interpretable 
proficiency scale. This approach ensures that performance benchmarks are defined in relation 
to an empirically derived latent ability continuum. The Rasch model effectively maps student 
responses along a common metric, facilitating meaningful comparisons across different 
assessments and test forms. 
 
A key advantage of IRT-based benchmark setting is its ability to maintain measurement 
invariance. Unlike traditional norm-referenced methods, which rely on fixed percentiles and 
may be biased by sample characteristics, IRT ensures that proficiency levels are anchored to 
the underlying construct of reading proficiency. The study’s approach to defining precursor 
skill thresholds relative to RC benchmarks further underscores the utility of IRT in setting valid 
and consistent benchmarks across diverse contexts and across both comprehension and its 
precursor skills, and along the same latent scale. Additionally, CIs in IRT-derived estimates 
quantify the degree of uncertainty associated with proficiency classifications. 
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Furthermore, the ability of IRT to estimate student ability independently of the specific items 
administered makes it especially suitable for large-scale educational assessments. The ability 
to equate scores across different test forms enhances comparability, ensuring that the 
established benchmarks remain valid even when different test versions are used. This 
property is particularly advantageous in longitudinal studies and cross-sectional comparisons 
where maintaining consistency in measurement is essential. 

Comparative Analysis: IRT vs GLMM 
While GLMM is computationally efficient and provides precise estimates, it falls short in 
capturing item-level differences. By treating all items equally in the estimation of ability, it 
fails to account for important variations in item difficulty and discrimination. IRT-based 
models explicitly incorporate item-level parameters, allowing more accurate estimation of 
student proficiency across all skills.  
 
Comparative analysis between RA-IRT and RA-GLMM results showed that while GLMM 
produces narrower confidence intervals, this precision comes at cost of ignoring variability in 
student responses. This trade-off highlights a fundamental issue in benchmark estimation—
precision alone is not sufficient, if it comes at the expense of capturing the true distribution 
of ability levels. IRT embraces the complexity of item interactions and variability, making it a 
more reliable approach for large-scale educational assessments. 

Limitations and Future Research 
Despite its advantages, IRT-based benchmark setting presents certain challenges.  

• Broad CIs – Initial non-RC subtask benchmarks showed wide CIs, reducing precision. 
This was mitigated through subtask-specific SEs, but further refinements are needed. 
These refinements, forthcoming in future drafts of this report, will rely on a more 
precise understanding of the nature of the assessments being benchmarked using a 
stronger dialogue or discussion between psychometricians and reading science 
experts. 

• Assumption of unidimensionality – The Rasch model may not fully capture the 
complexity of literacy development, particularly in assessments that integrate multiple 
skill domains. Future research should explore the effect of other IRT models such as 
the 2PL and 3PL models and/or multidimensional IRT models in benchmark estimation 
to better account for interactions between different literacy components. 

• Small sample sizes – Integration of Bayesian estimation methods to estimate IRT 
model parameters could provide more flexible priors, allowing for accurate benchmark 
estimation while maintaining the interpretability and theoretical advantages of IRT. 

 
In conclusion, while both IRT and GLMM offer valuable insights for foundational literacy 
assessment benchmarks, IRT provides a more comprehensive approach by incorporating item 
differences and making the best use of available data. Future methodological advancements 
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should focus on further refining CI estimation, examining the effects of additional IRT models 
on benchmark estimation, comparing additional methods of parameter estimation, and 
enhancing the accuracy and applicability of literacy benchmarks by using data-driven 
methods. 
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